版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆吉林省東北師大附中重慶一中等六校高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等差數(shù)列中,,則()A.9 B.6C.3 D.12.橢圓的一個焦點坐標(biāo)為,則()A.2 B.3C.4 D.83.已知,是橢圓C的兩個焦點,P是C上的一點,若以為直徑的圓過點P,且,則C的離心率為()A. B.C. D.4.若曲線表示圓,則m的取值范圍是()A. B.C. D.5.設(shè)為數(shù)列的前n項和,且,則=()A.26 B.19C.11 D.96.已知平面的一個法向量為=(2,-2,4),=(-1,1,-2),則AB所在直線l與平面的位置關(guān)系為()A.l⊥ B.C.l與相交但不垂直 D.l∥7.《九章算術(shù)》是我國古代的數(shù)學(xué)巨著,書中有如下問題:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次漸多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(爵位依次變低)5個人共出100錢,按照爵位從高到低每人所出錢數(shù)成遞增的等差數(shù)列,這5個人各出多少錢?”在這個問題中,若公士出28錢,則不更出的錢數(shù)為()A.14 B.16C.18 D.208.下列三個命題:①“若,則a,b全為0”的逆否命題是“若a,b全不為0,則”;②若事件A與事件B互斥,則;③設(shè)命題p:若m是質(zhì)數(shù),則m一定是奇數(shù),那么是真命題;其中真命題的個數(shù)為()A.3 B.2C.1 D.09.已知函數(shù)(是的導(dǎo)函數(shù)),則()A.21 B.20C.16 D.1110.拋物線上的一點到其焦點的距離等于()A. B.C. D.11.已知等比數(shù)列中,,則這個數(shù)列的公比是()A.2 B.4C.8 D.1612.已知是等差數(shù)列,,,則公差為()A.6 B.C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知圓的半徑為3,,為該圓的兩條切線,為切點,則的最小值為___________.14.設(shè)橢圓的左,右焦點分別為,,過的直線l與C交于A,B兩點(點A在x軸上方),且滿足,則直線l的斜率為______.15.某工廠年前加緊手套生產(chǎn),設(shè)該工廠連續(xù)5天生產(chǎn)的手套數(shù)依次為,,,,(單位:萬只),若這組數(shù)據(jù),,,,的方差為4,且,,,,的平均數(shù)為8,則該工廠這5天平均每天生產(chǎn)手套______萬只16.已知圓錐底面半徑為1,高為,則該圓錐的側(cè)面積為_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C:經(jīng)過點(1,-1).(1)求拋物線C的方程及其焦點坐標(biāo);(2)過拋物線C上一動點P作圓M:的一條切線,切點為A,求切線長|PA|的最小值.18.(12分)銳角中滿足,其中分別為內(nèi)角的對邊(I)求角;(II)若,求的取值范圍19.(12分)已知函數(shù)(Ⅰ)求的單調(diào)區(qū)間和最值;(Ⅱ)設(shè),證明:當(dāng)時,20.(12分)請分別確定滿足下列條件的直線方程(1)過點(1,0)且與直線x﹣2y﹣2=0垂直直線方程是(2)求與直線3x-4y+7=0平行,且在兩坐標(biāo)軸上截距之和為1的直線l的方程.21.(12分)如圖,在三棱錐中,側(cè)面PBC是邊長為2的等邊三角形,M,N分別為AB,AP的中點.過MN的平面與側(cè)面PBC交于EF(1)求證:;(2)若平面平面ABC,,求直線PB與平面PAC所成角的正弦值22.(10分)如圖,在四棱錐中,底面是矩形,,,,,為的中點.(1)證明:平面;(2)求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】直接由等差中項得到結(jié)果.詳解】由得.故選:A.2、D【解析】由條件可得,,,,由關(guān)系可求值.【詳解】∵橢圓方程為:,∴,∴,,∵橢圓的一個焦點坐標(biāo)為,∴,又,∴,∴,故選:D.3、B【解析】根據(jù)題意,在中,設(shè),則,進而根據(jù)橢圓定義得,進而可得離心率.【詳解】在中,設(shè),則,又由橢圓定義可知則離心率,故選:B.【點睛】本題考查橢圓離心率的計算,考查運算求解能力,是基礎(chǔ)題.本題解題的關(guān)鍵在于根據(jù)已知條件,結(jié)合橢圓的定義,在焦點三角形中根據(jù)邊角關(guān)系求解.4、C【解析】按照圓的一般方程滿足的條件求解即可.【詳解】或.故選:C.5、D【解析】先求得,然后求得.【詳解】依題意,當(dāng)時,,當(dāng)時,,,所以,所以.故選:D6、A【解析】由向量與平面法向量的關(guān)系判斷直線與平面的位置關(guān)系【詳解】因為,所以,所以故選:A7、B【解析】由題可知這是一個等差數(shù)列,前項和,,列式求基本量即可.【詳解】設(shè)每人所出錢數(shù)成等差數(shù)列,公差為,前項和為,則由題可得,解得,所以不更出的錢數(shù)為.故選:B8、B【解析】寫出逆否命題可判斷①;根據(jù)互斥事件的概率定義可判斷②;根據(jù)寫出再判斷真假可判斷③.【詳解】對于①,“,則a,b全為0”的逆否命題是“若a,b不全為0,則”,故①錯誤;對于②,滿足互斥事件的概率求和的方法,所以②為真命題;③命題p:若m是質(zhì)數(shù),則m一定是奇數(shù).2是質(zhì)數(shù),但2是偶數(shù),命題p是假命題,那么真命題故選:B.9、B【解析】根據(jù)已知求出,即得解.【詳解】解:由題得,所以.故選:B10、C【解析】由點的坐標(biāo)求得參數(shù),再由焦半徑公式得結(jié)論【詳解】由題意,解得,所以,故選:C11、A【解析】直接利用公式計算即可.【詳解】設(shè)等比數(shù)列的公比為,由已知,,所以,解得.故選:A12、C【解析】設(shè)的首項為,把已知的兩式相減即得解.【詳解】解:設(shè)的首項為,根據(jù)題意得,兩式相減得.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)(),,則,,,根據(jù)數(shù)量積的定義和余弦的二倍角公式結(jié)合基本不等式即可求解詳解】如圖所示,設(shè)(),,則,,,,當(dāng)且僅當(dāng)即時等號成立,∴的最小值是.故答案為:14、【解析】設(shè)出直線的方程并與橢圓方程聯(lián)立,結(jié)合根與系數(shù)關(guān)系以及求得直線的斜率.【詳解】橢圓,由于在軸上方且直線的斜率存在,所以直線的斜率不為,設(shè)直線的方程為,且,由,消去并化簡得,設(shè),,則①,②,由于,所以③,由①②③解得所以直線的方程為,斜率為.故答案為:15、2【解析】結(jié)合方差、平均數(shù)的公式列方程,化簡求得正確答案.【詳解】依題意設(shè),則,.故答案為:16、【解析】由已知求得母線長,代入圓錐側(cè)面積公式求解【詳解】由已知可得r=1,h=,則圓錐的母線長l=,∴圓錐的側(cè)面積S=πrl=2π故答案為2π【點睛】本題考查圓錐側(cè)面積的求法,側(cè)面積公式S=πrl.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),焦點坐標(biāo)為;(2)【解析】(1)將點代入拋物線方程求解出的值,則拋物線方程和焦點坐標(biāo)可知;(2)設(shè)出點坐標(biāo),根據(jù)切線垂直于半徑,根據(jù)點到點距離公式表示出,然后結(jié)合二次函數(shù)的性質(zhì)求解出的最小值.【小問1詳解】解:因為拋物線過點,所以,解得,所以拋物線的方程為:,焦點坐標(biāo)為;【小問2詳解】解:設(shè),因為為圓的切線,所以,,所以,所以當(dāng)時,四邊形有最小值且最小值為.18、(I);(II)【解析】(I)由正弦定理邊角互化并整理得,進而由余弦定理得;(II)正弦定理得,故,再根據(jù)三角恒等變換得,由于銳角中,,進而根據(jù)三角函數(shù)性質(zhì)求得答案.【詳解】解:(I)由正弦定理得所以,即,所以,因為銳角中,,所以;(II)因為,,所以所以,因為,所以,所以,所以,所以19、(Ⅰ)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;最小值為,無最大值;(Ⅱ)證明見解析【解析】(Ⅰ)根據(jù)導(dǎo)函數(shù)的正負(fù)即可確定單調(diào)區(qū)間,由單調(diào)性可得最值點;(Ⅱ)構(gòu)造函數(shù),利用導(dǎo)數(shù)可確定單調(diào)性,結(jié)合的正負(fù)可確定的零點的范圍,進而得到結(jié)論.【詳解】(Ⅰ)由題意得:定義域為,,當(dāng)時,;當(dāng)時,;的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為的最小值為,無最大值(Ⅱ)設(shè),則,令得:當(dāng)時,;當(dāng)時,,在上單調(diào)遞增;在上單調(diào)遞減由(Ⅰ)知:,可得:,,可得:,即又,當(dāng)時,,即當(dāng)時,【點睛】思路點睛:本題考查導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,涉及到函數(shù)單調(diào)性和最值的求解、利用導(dǎo)數(shù)證明不等式等知識;利用導(dǎo)數(shù)證明不等式的關(guān)鍵是能夠通過移項構(gòu)造的方式,構(gòu)造出新的函數(shù),通過的單調(diào)性,結(jié)合零點所處的范圍可分析得到結(jié)果.20、(1)2x+y﹣2=0(2)3x-4y-12=0【解析】(1)設(shè)與直線x﹣2y﹣2=0垂直的直線方程為2x+y+m=0,把(1,0)代入2x+y+m=0,解得m即得解(2)方法一:由題意知:可設(shè)l的方程為,求出l在x軸,y軸上的截距,由截距之和為1,解出m,代回求出直線方程;方法二:設(shè)直線方程為,由題意得,解出a,b即可.【小問1詳解】設(shè)與直線x﹣2y﹣2=0垂直的直線方程為2x+y+m=0,把(1,0)代入2x+y+m=0,可得2+m=0,解得m=﹣2所求直線方程為:2x+y﹣2=0【小問2詳解】方法一:由題意知:可設(shè)l的方程為,則l在x軸,y軸上的截距分別為.由知,.所以直線l的方程為:.方法二:顯然直線在兩坐標(biāo)軸上截距不為0,則設(shè)直線方程為,由題意得解得所以直線l的方程為:.即.21、(1)證明見解析(2)【解析】(1)由題意先證明平面PBC,然后由線面平行的性質(zhì)定理可證明.(2)由平面平面ABC,取BC中點O,則平面ABC,可得,由條件可得,以O(shè)坐標(biāo)原點,分別以O(shè)B,AO,OP為x,y,z軸建立空間直角坐標(biāo)系,利用向量法求解即可.【小問1詳解】因為M,N分別為AB,AP的中點,所以,又平面PBC,所以平面PBC,因為平面平面,所以【小問2詳解】因為平面平面ABC,取BC中點O,連接PO,AO,因為是等邊三角形,所以,所以平面ABC,故,又因,所以,以O(shè)為坐標(biāo)原點,分別以O(shè)B,AO,OP為x,y,z軸建立空間直角坐標(biāo)系,可得:,,,,,所以,,,設(shè)平面PAC的法向量為,則,則,令,得,,所以,所以直線PB與平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度酒店特色主題宴會預(yù)訂合同范本
- 2025年度股權(quán)期權(quán)激勵與公司業(yè)績掛鉤合同
- 二零二五年度港口倉儲停車場租賃合同
- 2025年度液化氣配送站安全應(yīng)急預(yù)案編制合同
- 局部模特培訓(xùn)教程課件
- 2025超市卸貨天棚制安合同
- 2025關(guān)于解除勞動合同證明書范本
- 2025購銷合同(標(biāo)準(zhǔn)文本4)
- 2025土地承包經(jīng)營合同模板
- 綠色環(huán)保產(chǎn)業(yè)基金投資合同三篇
- “十四五”期間推進智慧水利建設(shè)實施方案
- EPC項目機電安裝專業(yè)工程重難點分析及經(jīng)驗交流
- 大型活動聯(lián)合承辦協(xié)議
- 工程項目采購與供應(yīng)鏈管理研究
- 2024年吉林高考語文試題及答案 (2) - 副本
- 拆除電纜線施工方案
- 搭竹架合同范本
- Neo4j介紹及實現(xiàn)原理
- 焊接材料-DIN-8555-標(biāo)準(zhǔn)
- 工程索賠真實案例范本
- 重癥醫(yī)學(xué)科運用PDCA循環(huán)降低ICU失禁性皮炎發(fā)生率品管圈QCC持續(xù)質(zhì)量改進成果匯報
評論
0/150
提交評論