2024屆江蘇省連云港市灌云縣高二上數(shù)學期末復(fù)習檢測模擬試題含解析_第1頁
2024屆江蘇省連云港市灌云縣高二上數(shù)學期末復(fù)習檢測模擬試題含解析_第2頁
2024屆江蘇省連云港市灌云縣高二上數(shù)學期末復(fù)習檢測模擬試題含解析_第3頁
2024屆江蘇省連云港市灌云縣高二上數(shù)學期末復(fù)習檢測模擬試題含解析_第4頁
2024屆江蘇省連云港市灌云縣高二上數(shù)學期末復(fù)習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆江蘇省連云港市灌云縣高二上數(shù)學期末復(fù)習檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.經(jīng)過點且與直線垂直的直線方程為()A. B.C. D.2.下列說法正確的個數(shù)有()個①在中,若,則②是,,成等比數(shù)列的充要條件③直線是雙曲線的一條漸近線④函數(shù)的導函數(shù)是,若,則是函數(shù)的極值點A.0 B.1C.2 D.33.已知圓和橢圓.直線與圓交于、兩點,與橢圓交于、兩點.若時,的取值范圍是,則橢圓的離心率為()A. B.C. D.4.人教A版選擇性必修二教材的封面圖案是斐波那契螺旋線,它被譽為自然界最完美的“黃金螺旋”,自然界存在很多斐波那契螺旋線的圖案,例如向日葵、鸚鵡螺等.斐波那契螺旋線的畫法是:以斐波那契數(shù)1,1,2,3,5,8,…為邊長的正方形拼成長方形,然后在每個正方形中畫一個圓心角為90°的圓弧,這些圓弧所連起來的弧線就是斐波那契螺旋線.下圖為該螺旋線在正方形邊長為1,1,2,3,5,8的部分,如圖建立平面直角坐標系(規(guī)定小方格的邊長為1),則接下來的一段圓弧所在圓的方程為()A. B.C. D.5.拋物線的焦點到準線的距離為()A. B.C. D.6.已知梯形中,,且,則的值為()A. B.C. D.7.已知拋物線上一點的縱坐標為4,則點到拋物線焦點的距離為A.2 B.3C.4 D.58.若直線的斜率,則直線的傾斜角的取值范圍是()A. B.C. D.9.執(zhí)行如圖所示的程序框圖,若輸出的,則輸人的()A. B.或C. D.或10.如圖,在三棱柱中,為的中點,若,,,則下列向量與相等的是()A. B.C. D.11.已知等差數(shù)列中,、是的兩根,則()A B.C. D.12.《萊茵德紙草書》是世界上最古老的數(shù)學著作之一.書中有這樣一道題目:把個面包分給個人,使每個人所得成等差數(shù)列,且使較大的三份之和的是較小的兩份之和,則最小的一份為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的焦點到準線的距離是______.14.(建三江)函數(shù)在處取得極小值,則=___15.已知圓,以點為中點的弦所在的直線的方程是___________16.已知在四面體ABCD中,,,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,C是以為直徑的圓上異于的點,平面平面分別是的中點.(1)證明:平面;(2)若直線與平面所成角的正切值為2,求銳二面角的余弦值.18.(12分)如圖所示,四棱錐的底面為矩形,,,過底面對角線作與平行的平面交于點(1)求二面角的余弦值;(2)求與所成角的余弦值;(3)求與平面所成角的正弦值19.(12分)在矩形中,是的中點,是上,,且,如圖,將沿折起至:(1)指出二面角的平面角,并說明理由;(2)若,求證:平面平面;(3)若是線段的中點,求證:直線平面;20.(12分)命題p:直線l:與圓C:有公共點,命題q:雙曲線的離心率(1)若p,q均為真命題,求實數(shù)m的取值范圍;(2)若為真,為假,求實數(shù)m的取值范圍21.(12分)在銳角中,角的對邊分別為,滿足.(1)求;(2)若的面積為,求的值.22.(10分)在下列所給的三個條件中任選一個,補充在下面的問題中,并加以解答①過(-1,2);②與直線平行;③與直線垂直問題:已知直線過點M(3,5),且______(1)求的方程;(2)若與圓相交于點A、B,求弦AB的長

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)點斜式求得正確答案.【詳解】直線的斜率為,經(jīng)過點且與直線垂直的直線方程為,即.故選:A2、B【解析】根據(jù)三角函數(shù)、等比數(shù)列、雙曲線和導數(shù)知識逐項分析即可求解.【詳解】①在中,則有,因,所以,又余弦函數(shù)在上單調(diào)遞減,所以,故①正確,②當且時,此時,但是,,不成等比數(shù)列,故②錯誤,③由雙曲線可得雙曲線的漸近線為,故③錯誤,④“”是“是函數(shù)的極值點”的必要不充分條件,故④錯誤.故選:B.3、C【解析】由題設(shè),根據(jù)圓與橢圓的對稱性,假設(shè)在第一象限可得,結(jié)合已知有,進而求橢圓的離心率.【詳解】由題設(shè),圓與橢圓的如下圖示:又時,的取值范圍是,結(jié)合圓與橢圓的對稱性,不妨假設(shè)在第一象限,∴從0逐漸增大至無窮大時,,故,∴故選:C.4、C【解析】由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由于每一個圓弧為四分之一圓,從而可求出下一段圓弧所以圓的圓心,進而可得其方程【詳解】解:由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由題意可知下一段圓弧過點,因為每一段圓弧的圓心角都為90°,所以下一段圓弧所在圓的圓心與點的連線平行于軸,因為下一段圓弧半徑為13,所以所求圓的圓心為,所以所求圓的方程為,故選:C5、B【解析】根據(jù)拋物線的幾何性質(zhì)可得選項.【詳解】由得,所以,所以拋物線的焦點到準線的距離為1,故選:B.6、D【解析】根據(jù)共線定理、平面向量的加法和減法法則,即可求得,進而求出的值,即可求出結(jié)果.【詳解】因為,所以又,所以.故選:D.7、D【解析】拋物線焦點在軸上,開口向上,所以焦點坐標為,準線方程為,因為點A的縱坐標為4,所以點A到拋物線準線的距離為,因為拋物線上的點到焦點的距離等于到準線的距離,所以點A與拋物線焦點的距離為5.考點:本小題主要考查應(yīng)用拋物線定義和拋物線上點的性質(zhì)拋物線上的點到焦點的距離,考查學生的運算求解能力.點評:拋物線上的點到焦點的距離等于到準線的距離,這條性質(zhì)在解題時經(jīng)常用到,可以簡化運算.8、B【解析】根據(jù)斜率的取值范圍,結(jié)合來求得傾斜角的取值范圍.【詳解】設(shè)傾斜角為,因為,且,所以.故選:B9、A【解析】根據(jù)題意可知該程序框圖顯示的算法函數(shù)為,分和兩種情況討論即可得解.【詳解】解:該程序框圖顯示得算法函數(shù)為,由,當時,,方程無解;當時,,解得,綜上,若輸出的,則輸入的.故選:A.10、A【解析】利用空間向量基本定理求解即可【詳解】由于M是的中點,所以故選:A11、B【解析】利用韋達定理結(jié)合等差中項的性質(zhì)可求得的值,再結(jié)合等差中項的性質(zhì)可求得結(jié)果.【詳解】對于方程,,由韋達定理可得,故,則,所以,.故選:B.12、A【解析】設(shè)5人分到的面包數(shù)量從小到大記為,設(shè)公差為,可得,,求出,根據(jù)等差數(shù)列的通項公式,得到關(guān)于關(guān)系式,即可求出結(jié)論.【詳解】設(shè)5人分到的面包數(shù)量從小到大記為,設(shè)公差為,依題意可得,,,,解得,.故選:A.【點睛】本題以數(shù)學文化為背景,考查等差數(shù)列的前項和、通項公式基本量的計算,等差數(shù)列的性質(zhì)應(yīng)用是解題的關(guān)鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】由y2=2px=8x知p=4,又焦點到準線的距離就是p,所以焦點到準線的距離為4.14、【解析】由,令,解得或,且時,;時,;時,,所以當時,函數(shù)取得極小值考點:導數(shù)在函數(shù)中的應(yīng)用;極值的條件15、【解析】設(shè),利用以為中點的弦所在的直線即為經(jīng)過點且垂直于AC的直線求得直線斜率,由點斜式可求得直線方程【詳解】圓的方程可化為,可知圓心為設(shè),則以為中點的弦所在的直線即為經(jīng)過點且垂直于的直線.又知,所以,所以直線的方程為,即故答案為:【點睛】本題考查圓的幾何性質(zhì),考查直線方程求解,是基礎(chǔ)題16、24【解析】由線段的空間關(guān)系有,應(yīng)用向量數(shù)量積的運算律及已知條件即可求.【詳解】由題設(shè),可得如下四面體示意圖,則,又,,所以.故答案為:24三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)由分別是的中點,得到,在由是圓的直徑,所以,結(jié)合面面垂直的性質(zhì)定理,證得面,即可證得面;(2)以C為坐標原點,為x軸,為y軸,過C垂直于面直線為z軸,建立空間直角坐標系,分別求得平面與平面的一個法向量,結(jié)合向量的夾角公式,即可求解.【小問1詳解】證明:在,因為分別是的中點,所以,又因為是圓的直徑,所以,又由平面平面,平面平面,且平面,所以面,因為,所以面.【小問2詳解】解:由(1)知面,所以直線與平面所成角為,由題意知,以C為坐標原點,為x軸,為y軸,過C垂直于面的直線為z軸,建立空間直角坐標系,如圖所示,可得,則,,設(shè)面的法向量為,則,取,可得,所以,設(shè)面的法向量為,則,取,可得,所以,則,所以銳二面角的余弦值為.18、(1);(2);(3).【解析】(1)設(shè),連接、,證明出平面,推導出為的中點,然后以點為坐標原點,、、的方向分別為、、軸的正方向建立空間直角坐標系,利用空間向量法可求得二面角的余弦值;(2)利用空間向量法可求得與所成角的余弦值;(3)利用空間向量法可求得與平面所成角的正弦值.【小問1詳解】解:設(shè),則為、的中點,連接、,因為平面,平面,平面平面,則,因為為的中點,則為的中點,因為,為的中點,則,同理可證,,平面,,,則,,以點為坐標原點,、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標系,則、、、、、,設(shè)平面的法向量為,,,由,取,可得,易知平面的一個法向量為,.由圖可知,二面角的平面角為銳角,因此,二面角的余弦值為.【小問2詳解】解:,,,因此,與所成角的余弦值為.【小問3詳解】解:,,因此,與平面所成角的正弦值為.19、(1)為二面角的平面角,理由見解析(2)證明見解析(3)證明見解析【解析】(1)根據(jù),結(jié)合二面角定義得到答案.(2)證明平面得到,得到平面,得到證明.(3)延長,交于點,連接,證明即可.【小問1詳解】連接,則,,故為二面角的平面角.【小問2詳解】,,,故平面,平面,故,又,,故平面,平面,故平面平面.【小問3詳解】延長,交于點,連接,易知,故故是的中點,是線段的中點,故,平面,且平面,故直線平面.20、(1),;(2).【解析】(1)求出,成立的等價條件,即可求實數(shù)的取值范圍;(2)若“”為假命題,“”為真命題,則、一真一假,當真假時,求出的取值范圍,當假真時,求出的取值范圍,然后取并集即可得答案【小問1詳解】若命題為真命題,則,解得:,若命題為真命題,則且,,解得,∴,均為真命題,實數(shù)的取值范圍是,;【小問2詳解】若為真,為假,則、一真一假;①當真假時,即“”且“或”,則此時的取值范圍是;當假真時,即“或”且“”,則此時的取值范圍是;綜上,的取值范圍是21、(1);(2).【解析】(1)由條件可得,即,從而可得答案.(2)由條件結(jié)合三角形的面積公式可得,再由余弦定理得,配方可得答案.【詳解】(1)因為,所以,所以所以,因為所以,因為,所以(2)由面積公式得,于是,由余弦定理得,即,整理得,故.22、(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論