版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆陜西咸陽市高二上數(shù)學期末經(jīng)典模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等差數(shù)列中,若,則的值為()A. B.C. D.2.在等差數(shù)列中,,,則使數(shù)列的前n項和成立的最大正整數(shù)n=()A.2021 B.2022C.4041 D.40423.已知函數(shù)的圖象是下列四個圖象之一,且其導函數(shù)的圖象如圖所示,則該函數(shù)的圖象是()A. B.C. D.4.已知直線l:過橢圓的左焦點F,與橢圓在x軸上方的交點為P,Q為線段PF的中點,若,則橢圓的離心率為()A. B.C. D.5.在正方體中中,,若點P在側(cè)面(不含邊界)內(nèi)運動,,且點P到底面的距離為3,則異面直線與所成角的余弦值是()A. B.C. D.6.若存在兩個不相等的正實數(shù)x,y,使得成立,則實數(shù)m的取值范圍是()A. B.C. D.7.設正實數(shù),滿足(其中為正常數(shù)),若的最大值為3,則()A.3 B.C. D.8.若,滿足約束條件則的最大值是A.-8 B.-3C.0 D.19.已知向量,且,則的值為()A.4 B.2C.3 D.110.設實系數(shù)一元二次方程在復數(shù)集C內(nèi)的根為、,則由,可得.類比上述方法:設實系數(shù)一元三次方程在復數(shù)集C內(nèi)的根為,則的值為A.﹣2 B.0C.2 D.411.在中,已知角A,B,C所對邊為a,b,c,,,,則()A. B.C. D.112.已知F1(-5,0),F(xiàn)2(5,0),動點P滿足|PF1|-|PF2|=2a,當a為3和5時,點P的軌跡分別為()A.雙曲線和一條直線 B.雙曲線和一條射線C.雙曲線的一支和一條直線 D.雙曲線的一支和一條射線二、填空題:本題共4小題,每小題5分,共20分。13.總書記在“十九大”報告中指出:堅定文化自信,推動中華優(yōu)秀傳統(tǒng)文化創(chuàng)造性轉(zhuǎn)化.“楊輝三角”揭示了二項式系數(shù)在三角形中的一種幾何排列規(guī)律,最早在中國南宋數(shù)學家楊輝1261年所著的《詳解九章算法》一書中出現(xiàn),歐洲數(shù)學家帕斯卡在1654年才發(fā)現(xiàn)這一規(guī)律,比楊輝要晚近四百年.“楊輝三角”是中國數(shù)學史上的一個偉大成就,激發(fā)起一批又一批數(shù)學愛好者的探究欲望.如圖所示,在由二項式系數(shù)所構(gòu)成的“楊輝三角中,第10行第8個數(shù)是______14.在正方體中,,,P,F(xiàn)分別是線段,的中點,則點P到直線EF的距離是___________.15.拋物線焦點坐標是,則______16.若實數(shù)x,y滿足約束條件,則的最大值是_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)求函數(shù)在區(qū)間上的最大值與最小值.18.(12分)記為數(shù)列的前項和,且(1)求的通項公式;(2)設,求數(shù)列的前項和19.(12分)已知函數(shù)(1)討論的單調(diào)性;(2)當時,證明20.(12分)已知點,點B為直線上的動點,過B作直線的垂線,線段AB的中垂線與交于點P(1)求點P的軌跡C的方程;(2)若過點的直線l與曲線C交于M,N兩點,求面積的最小值.(O為坐標原點)21.(12分)已知拋物線上任意一點到焦點F最短距離為2,(1)求拋物線C的方程;(2)過焦點F的直線,互相垂直,且與C分別交于A,B,M,N四點,求四邊形AMBN面積的最小值22.(10分)已知數(shù)列的首項,前n項和為,且滿足.(1)求證:數(shù)列是等比數(shù)列;(2)設,求數(shù)列的前n項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用等差數(shù)列性質(zhì)可求得,由可求得結(jié)果.【詳解】由等差數(shù)列性質(zhì)知:,,解得:;又,.故選:C.2、C【解析】根據(jù)等差數(shù)列的性質(zhì)易得,,再應用等差數(shù)列前n項和公式及等差中項、下標和的性質(zhì)可得、,即可確定答案.【詳解】因為是等差數(shù)列且,,所以,,.故選:C.3、A【解析】利用導數(shù)與函數(shù)的單調(diào)性之間的關(guān)系及導數(shù)的幾何意義即得.【詳解】由函數(shù)f(x)的導函數(shù)y=f′(x)的圖像自左至右是先減后增,可知函數(shù)y=f(x)圖像的切線的斜率自左至右先減小后增大,且,在處的切線的斜率為0,故BCD錯誤,A正確.故選:A.4、D【解析】由直線的傾斜角為,可得,結(jié)合,可推得是等邊三角形,可得,計算可得離心率【詳解】直線:過橢圓的左焦點,設橢圓的右焦點為,所以,又是的中點,是的中點,所以,又,所以,又,所以是等邊三角形,所以,又在橢圓上,所以,所以,所以離心率為,故選:5、A【解析】如圖建立空間直角坐標系,先由,且點P到底面的距離為3,確定點P的位置,然后利用空間向量求解即可【詳解】如圖,以為坐標原點,以所在的直線分別為軸,建立空間直角坐標系,則,所以,所以,所以,因為,所以平面,因為平面平面,點P在側(cè)面(不含邊界)內(nèi)運動,,所以,因為點P到底面的距離為3,所以,所以,因為,所以異面直線與所成角的余弦值為,故選:A6、D【解析】將給定等式變形并構(gòu)造函數(shù),由函數(shù)的圖象與垂直于y軸的直線有兩個公共點推理作答.【詳解】因,令,則存在兩個不相等的正實數(shù)x,y,使得,即存在垂直于y軸的直線與函數(shù)的圖象有兩個公共點,,,而,當時,,函數(shù)在上單調(diào)遞增,則垂直于y軸的直線與函數(shù)的圖象最多只有1個公共點,不符合要求,當時,由得,當時,,當時,,即函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,,令,,令,則,即在上單調(diào)遞增,,即,在上單調(diào)遞增,則有當時,,,而函數(shù)在上單調(diào)遞增,取,則,而,因此,存在垂直于y軸的直線(),與函數(shù)的圖象有兩個公共點,所以實數(shù)m的取值范圍是.故選:D【點睛】思路點睛:涉及雙變量的等式或不等式問題,把雙變量的等式或不等式轉(zhuǎn)化為一元變量問題求解,途徑都是構(gòu)造一元函數(shù).7、D【解析】由于,,為正數(shù),且,所以利用基本不等式可求出結(jié)果【詳解】解:因為正實數(shù),滿足(其中為正常數(shù)),所以,則,所以,所以故選:D.8、C【解析】作出可行域,把變形為,平移直線過點時,最大.【詳解】作出可行域如圖:由得:,作出直線,平移直線過點時,.故選C.【點睛】本題主要考查了簡單線性規(guī)劃問題,屬于中檔題.9、A【解析】由題意可得,利用空間向量數(shù)量積的坐標表示列方程,解方程即可求解.【詳解】因為,所以,因為向量,,所以,解得,所以的值為,故選:A.10、A【解析】用類比推理得到,再用待定系數(shù)法得到,,再根據(jù)求解.【詳解】,由對應系數(shù)相等得:,.故選:A.【點睛】本題主要考查合情推理以及待定系數(shù)法,還考查了轉(zhuǎn)化化歸的思想和邏輯推理的能力,屬于中檔題.11、B【解析】利用正弦定理求解.【詳解】在中,由正弦定理得,解得,故選:B.12、D【解析】由雙曲線定義結(jié)合參數(shù)a的取值分類討論而得.【詳解】依題意得,當時,,且,點P的軌跡為雙曲線的右支;當時,,故點P的軌跡為一條射線.故選D.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、120【解析】根據(jù)二項式的展開式系數(shù)的相關(guān)知識即可求解.【詳解】因為,二項式展開式第項的系數(shù)為,所以,第10行第8個數(shù)是.故答案為:12014、【解析】以A為坐標原點建立空間直角坐標系,利用向量法即可求解點P到直線EF的距離.【詳解】解:如圖,以A為坐標原點,,,的方向分別為x,y,z軸的正方向,建立空間直角坐標系,因為,所以,,,所以,,所以點P到直線EF的距離.故答案為:.15、2【解析】根據(jù)拋物線的幾何性質(zhì)直接求解可得.【詳解】的焦點坐標為,即.故答案為:216、##【解析】畫出可行域,通過平移基準直線到可行域邊界位置,由此求得的最大值.【詳解】,畫出可行域如下圖所示,由圖可知,平移基準直線到點時,取得最大值為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)遞增區(qū)間為;單調(diào)減區(qū)間為和;(2);.【解析】(1)求出導函數(shù),令,求出單調(diào)遞增區(qū)間;令,求出單調(diào)遞減區(qū)間.(2)求出函數(shù)的單調(diào)區(qū)間,利用函數(shù)的單調(diào)性即可求解.【詳解】1函數(shù)的定義域是R,,令,解得令,解得或,所以的單調(diào)遞增區(qū)間為,單調(diào)減區(qū)間為和;2由在單調(diào)遞減,在單調(diào)遞增,所以,而,,故最大值是.18、(1)(2)【解析】(1)利用,再結(jié)合等比數(shù)列的概念,即可求出結(jié)果;(2)由(1)可知數(shù)列是以為首項,公差為的等差數(shù)列,根據(jù)等差數(shù)列的前項和公式,即可求出結(jié)果.【小問1詳解】解:當時,,解得;當且時,所以所以是以為首項,為公比的等比數(shù)列所以;【小問2詳解】解:由(1)可知,所以,又,所以數(shù)列是以為首項,公差為的等差數(shù)列,所以數(shù)列的前項和.19、(1)答案見解析(2)證明見解析【解析】(1)求導得,進而分和兩種情況討論求解即可;(2)根據(jù)題意證明,進而令,再結(jié)合(1)得,研究函數(shù)的性質(zhì)得,進而得時,,即不等式成立.【小問1詳解】解:函數(shù)的定義域為,,∴當時,在上恒成立,故函數(shù)在區(qū)間上單調(diào)遞增;當時,由得,由得,即函數(shù)在區(qū)間上單調(diào)遞增,在上單調(diào)遞減;綜上,當時,在區(qū)間上單調(diào)遞增;當時,在區(qū)間上單調(diào)遞增,在上單調(diào)遞減;【小問2詳解】證明:因為時,證明,只需證明,由(1)知,當時,函數(shù)在區(qū)間上單調(diào)遞增,在上單調(diào)遞減;所以.令,則,所以當時,,函數(shù)單調(diào)遞減;當時,,函數(shù)單調(diào)遞增,所以.所以時,,所以當時,20、(1)(2)【解析】(1)由已知可得,根據(jù)拋物線的定義可知點的軌跡是以為焦點,為準線的拋物線,即可得到軌跡方程;(2)設直線方程為,,,,,聯(lián)立直線與拋物線方程,消元、列出韋達定理,則,代入韋達定理,即可求出面積最小值;【小問1詳解】解:由已知可得,,即點到定點的距離等于到直線的距離,故點的軌跡是以為焦點,為準線的拋物線,所以點的軌跡方程為【小問2詳解】解:當直線的傾斜角為時,與曲線只有一個交點,不符合題意;當直線的傾斜角不為時,設直線方程為,,,,,由,可得,,所以,,,,所以當且僅當時取等號,即面積的最小值為;21、(1)(2)128【解析】(1)設拋物線上任一點為,由可得答案.(2)由題意可知,的斜率k存在且不為0,設出其方程并與拋物線方程聯(lián)立,得出韋達定理,從而得出弦長的表達式,同理得出弦長的表達式,進而得出四邊形AMBN面積的不等式,從而求出其最小值.【小問1詳解】設拋物線上任一點為,則,所以當時,,又∵,∴,即所以拋物線C的方程為【小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Unit 5 We're family (說課稿)-2024-2025學年外研版(三起)(2024)英語三年級上冊
- 1《學習伴我成長》(說課稿)-部編版道德與法治三年級上冊
- Unit 2 Different families Part B Let's talk(說課稿)-2024-2025學年人教PEP版(2024)英語三年級上冊
- 2《用水計量時間》說課稿-2024-2025學年科學五年級上冊教科版
- 2025產(chǎn)品購銷合同樣書
- 2023九年級數(shù)學下冊 第25章 投影與視圖25.1 投影第2課時 正投影說課稿 (新版)滬科版001
- 2025城市民用戶燃氣工程實施合同書范本范文
- 2025婦女發(fā)展監(jiān)測評估項目工程合同管理
- 2025合同模板合伙人利潤分配協(xié)議范本
- 2024-2025學年高中政治 第3單元 第6課 第1框 源遠流長的中華文化說課稿 新人教版必修3001
- 汽修廠安全風險分級管控清單
- 現(xiàn)代通信原理與技術(shù)(第五版)PPT全套完整教學課件
- 病例展示(皮膚科)
- GB/T 39750-2021光伏發(fā)電系統(tǒng)直流電弧保護技術(shù)要求
- DB31T 685-2019 養(yǎng)老機構(gòu)設施與服務要求
- 燕子山風電場項目安全預評價報告
- 高一英語課本必修1各單元重點短語
- 糖尿病運動指導課件
- 完整版金屬學與熱處理課件
- T∕CSTM 00640-2022 烤爐用耐高溫粉末涂料
- 心腦血管病的危害教學課件
評論
0/150
提交評論