版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河南省開(kāi)封市第十七中學(xué)2023年數(shù)學(xué)高二上期末經(jīng)典模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若直線l的傾斜角是鈍角,則l的方程可能是()A. B.C. D.2.在數(shù)列中,,,則()A.985 B.1035C.2020 D.20703.過(guò)拋物線的焦點(diǎn)作直線l,交拋物線與A、B兩點(diǎn),若線段中點(diǎn)的縱坐標(biāo)為3,則等于()A.10 B.8C.6 D.44.命題“”的否定是()A. B.C. D.5.函數(shù)的圖象大致為()A. B.C. D.6.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為,如.如圖所示的程序框圖的算法源于我國(guó)古代聞名中外的“中國(guó)剩余定理”.執(zhí)行該程序框圖,則輸出的i等于()A.7 B.10C.13 D.167.中,,,分別為三個(gè)內(nèi)角,,的對(duì)邊,若,,,則()A. B.C. D.8.設(shè)P是雙曲線上的點(diǎn),若,是雙曲線的兩個(gè)焦點(diǎn),則()A.4 B.5C.8 D.109.拋物線有如下光學(xué)性質(zhì):平行于拋物線對(duì)稱軸的入射光線經(jīng)拋物線反射后必過(guò)拋物線的焦點(diǎn).已知拋物線的焦點(diǎn)為F,一條平行于y軸的光線從點(diǎn)射出,經(jīng)過(guò)拋物線上的點(diǎn)A反射后,再經(jīng)拋物線上的另一點(diǎn)B射出,則經(jīng)點(diǎn)B反射后的反射光線必過(guò)點(diǎn)()A. B.C. D.10.等比數(shù)列中,,則()A. B.C.2 D.411.已知正數(shù)x,y滿足,則取得最小值時(shí)()A. B.C.1 D.12.已知圓柱的底面半徑是1,高是2,那么該圓柱的側(cè)面積是()A.2 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知隨機(jī)變量X服從正態(tài)分布,若,則______14.若直線與直線平行,則直線與之間的距離為_(kāi)____15.在等比數(shù)列中,,,若數(shù)列滿足,則數(shù)列的前項(xiàng)和為_(kāi)_______16.過(guò)點(diǎn)與直線平行的直線的方程是________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)正項(xiàng)數(shù)列的前項(xiàng)和為,已知,(1)求數(shù)列的通項(xiàng)公式;(2)數(shù)列滿足,數(shù)列的前項(xiàng)和為,若不等式對(duì)一切恒成立,求的取值范圍18.(12分)已知點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)M滿足直線AM與BM的斜率之積為,記M的軌跡為曲線C.(1)求C的方程,并說(shuō)明C是什么曲線;(2)若直線和曲線C相交于E,F(xiàn)兩點(diǎn),求.19.(12分)已知點(diǎn)P到點(diǎn)的距離比它到直線的距離小1.(1)求點(diǎn)P的軌跡方程;(2)點(diǎn)M,N在點(diǎn)P的軌跡上且位于x軸的兩側(cè),(其中O為坐標(biāo)原點(diǎn)),求面積的最小值.20.(12分)已知橢圓:的一個(gè)焦點(diǎn)與曲線的焦點(diǎn)重合,且離心率為.(1)求橢圓的方程(2)設(shè)直線:交橢圓于M,N兩點(diǎn).①若且的面積為,求的值.②若軸上的任意一點(diǎn)到直線與直線(為橢圓的右焦點(diǎn))的距離相等,求證:直線恒過(guò)定點(diǎn),并求出該定點(diǎn)坐標(biāo)21.(12分)已知向量,,且.(1)求滿足上述條件的點(diǎn)M(x,y)的軌跡C的方程;(2)設(shè)曲線C與直線y=kx+m(k≠0)相交于不同的兩點(diǎn)P,Q,點(diǎn)A(0,1),當(dāng)|AP|=|AQ|時(shí),求實(shí)數(shù)m的取值范圍.22.(10分)已知公差不為0的等差數(shù)列滿足:且成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式;(2)記為數(shù)列的前n項(xiàng)和,求證是等差數(shù)列
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)直線方程,求得直線斜率,再根據(jù)傾斜角和斜率的關(guān)系,即可判斷和選擇.【詳解】若直線的傾斜角為,則,當(dāng)時(shí),為鈍角,當(dāng),,當(dāng),為銳角;當(dāng)不存在時(shí),傾斜角為,對(duì)A:,顯然傾斜角為鈍角;對(duì)B:,傾斜角為銳角;對(duì)C:,傾斜角為銳角;對(duì)D:不存在,此時(shí)傾斜角為直角.故選:A.2、A【解析】根據(jù)累加法得,,進(jìn)而得.【詳解】解:因?yàn)樗?,?dāng)時(shí),,,……,,所以,將以上式子相加得,所以,,.當(dāng)時(shí),,滿足;所以,.所以.故選:A3、B【解析】根據(jù)拋物線的定義求解【詳解】拋物線的焦點(diǎn)為,準(zhǔn)線方程為,設(shè),則,所以,故選:B4、C【解析】特稱命題的否定,先把存在量詞改為全稱量詞,再把結(jié)論進(jìn)行否定即可.【詳解】命題“”的否定是“”.故選:C5、A【解析】由題意首先確定函數(shù)的奇偶性,然后考查函數(shù)在特殊點(diǎn)的函數(shù)值排除錯(cuò)誤選項(xiàng)即可確定函數(shù)的圖象.【詳解】由函數(shù)的解析式可得:,則函數(shù)為奇函數(shù),其圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,選項(xiàng)CD錯(cuò)誤;當(dāng)時(shí),,選項(xiàng)B錯(cuò)誤.故選:A.【點(diǎn)睛】函數(shù)圖象的識(shí)辨可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置.(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢(shì).(3)從函數(shù)的奇偶性,判斷圖象的對(duì)稱性.(4)從函數(shù)的特征點(diǎn),排除不合要求的圖象.利用上述方法排除、篩選選項(xiàng)6、C【解析】根據(jù)“中國(guó)剩余定理”,進(jìn)而依次執(zhí)行循環(huán)體,最后求得答案.【詳解】由題意,第一步:,余數(shù)不為1;第二步:,余數(shù)不為1;第三步:,余數(shù)為1,執(zhí)行第二個(gè)判斷框,余數(shù)不為2;第四步:,執(zhí)行第一個(gè)判斷框,余數(shù)為1,執(zhí)行第二個(gè)判斷框,余數(shù)為2.輸出的i值為13.故選:C.7、C【解析】利用正弦定理求解即可.【詳解】,,,由正弦定理可得,解得,故選:C.8、C【解析】根據(jù)雙曲線的定義可得:,結(jié)合雙曲線的方程可得答案.【詳解】由雙曲線可得根據(jù)雙曲線的定義可得:故選:C9、D【解析】求出、坐標(biāo)可得直線的方程,與拋物線方程聯(lián)立求出,根據(jù)選項(xiàng)可得答案,【詳解】把代入得,所以,所以直線的方程為即,與拋物線方程聯(lián)立解得,所以,因?yàn)榉瓷涔饩€平行于y軸,根據(jù)選項(xiàng)可得D正確,故選:D10、D【解析】利用等比數(shù)列的下標(biāo)特點(diǎn),即可得到結(jié)果.【詳解】∵,∴,∴,∴.故選:D11、B【解析】根據(jù)基本不等式進(jìn)行求解即可.【詳解】因?yàn)檎龜?shù)x,y,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào),即時(shí),取等號(hào),而,所以解得,故選:B12、D【解析】由圓柱的側(cè)面積公式直接可得.【詳解】故選:D二、填空題:本題共4小題,每小題5分,共20分。13、##25【解析】根據(jù)正態(tài)分布曲線的對(duì)稱性即可求得結(jié)果.【詳解】,,又,,.故答案為:.14、【解析】由直線平行求參數(shù)m,再利用平行直線的距離公式求與之間的距離.【詳解】由題設(shè),,即,所以,,所以直線與之間的距離為.故答案為:15、【解析】求出等比數(shù)列的通項(xiàng)公式,可得出的通項(xiàng)公式,推導(dǎo)出數(shù)列為等差數(shù)列,利用等差數(shù)列的求和公式即可得解.【詳解】設(shè)等比數(shù)列的公比為,則,則,所以,,則,所以,數(shù)列為等差數(shù)列,故數(shù)列的前項(xiàng)和為.故答案為:.16、【解析】根據(jù)給定條件設(shè)出所求直線方程,利用待定系數(shù)法求解即得.【詳解】設(shè)與直線平行的直線的方程為,而點(diǎn)在直線上,于是得,解得,所以所求的直線的方程為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】(1)利用的關(guān)系求的通項(xiàng)公式;(2)由(1)得,應(yīng)用錯(cuò)位相減法求,根據(jù)不等式,討論n的奇偶性求參數(shù)范圍即可.【小問(wèn)1詳解】由題設(shè),當(dāng)時(shí),則,整理得,,則,當(dāng)時(shí),,又得:,故,所以數(shù)列是首項(xiàng)、公差均為2的等差數(shù)列,故.【小問(wèn)2詳解】由(1),,所以,,兩式相減得,故,所以令,易知:?jiǎn)握{(diào)遞增,若為偶數(shù),則,所以;若為奇數(shù),則,所以,即綜上,18、(1),曲線是一個(gè)雙曲線,除去左右頂點(diǎn)(2)【解析】(1)設(shè),則的斜率分別為,,根據(jù)題意列出方程,化簡(jiǎn)后即得C的方程,根據(jù)方程可以判定曲線類型,注意特殊點(diǎn)的去除;(2)聯(lián)立方程,利用韋達(dá)定理和弦長(zhǎng)公式計(jì)算可得.【小問(wèn)1詳解】解:設(shè),則的斜率分別為,,由已知得,化簡(jiǎn)得,即曲線C的方程為,曲線一個(gè)雙曲線,除去左右頂點(diǎn).【小問(wèn)2詳解】解:聯(lián)立消去整理得,設(shè),,則,.19、(1);(2).【解析】(1)根據(jù)給定條件可得點(diǎn)P到點(diǎn)的距離等于它到直線的距離,再由拋物線定義即可得解.(2)由(1)設(shè)出點(diǎn)M,N的坐標(biāo),再結(jié)合給定條件及三角形面積定理列式,借助均值不等式計(jì)算作答.【小問(wèn)1詳解】因點(diǎn)P到點(diǎn)的距離比它到直線的距離小1,顯然點(diǎn)P與F在直線l同側(cè),于是得點(diǎn)P到點(diǎn)的距離等于它到直線的距離,則點(diǎn)P的軌跡是以F為焦點(diǎn),直線為準(zhǔn)線的拋物線,所以點(diǎn)P的軌跡方程是.【小問(wèn)2詳解】由(1)設(shè)點(diǎn),,且,因,則,解得,S,當(dāng)且僅當(dāng),即時(shí)取“=”,所以面積的最小值為.【點(diǎn)睛】思路點(diǎn)睛:圓錐曲線中的幾何圖形面積范圍或最值問(wèn)題,可以以直線的斜率、橫(縱)截距、圖形上動(dòng)點(diǎn)的橫(縱)坐標(biāo)為變量,建立函數(shù)關(guān)系求解作答.20、(1)(2)①;②證明見(jiàn)解析,定點(diǎn)的坐標(biāo)為【解析】(1)由所給條件確定基本量即可.(2)①代入消元,韋達(dá)定理整體思想,列出關(guān)于的方程從而得解;②由已知可知,得到關(guān)于、的一次關(guān)系式可得證.【小問(wèn)1詳解】由已知橢圓的右焦點(diǎn)坐標(biāo)為,,所以,橢圓的方程:【小問(wèn)2詳解】①將與橢圓方程聯(lián)立得.設(shè),,則,解得,∴,,點(diǎn)到直線的距離為,∴,解得(舍去負(fù)值),∴.②設(shè),,將與橢圓方程聯(lián)立,得,當(dāng)時(shí),∴,,,若軸上任意一點(diǎn)到直線與的距離均相等,則軸為直線與的夾角的平分線,∴,即,∴.∴,解得.∴.∴直線恒過(guò)一定點(diǎn),該定點(diǎn)的坐標(biāo)為.21、(1)+y2=1;(2).【解析】(1)應(yīng)用向量垂直的坐標(biāo)表示得x2+3y2=3,即可寫出M的軌跡C的方程;(2)由直線與曲線C交于不同的兩點(diǎn)P(x1,y1),Q(x2,y2),設(shè)直線y=kx+m(k≠0),聯(lián)立方程整理所得方程有,且由根與系數(shù)關(guān)系用m,k表示x1+x2,x1x2,若N為PQ的中點(diǎn)結(jié)合|AP|=|AQ|知PQ⊥AN可得m、k的等量關(guān)系,結(jié)合即可求m的范圍.【詳解】(1)∵,即,∴,即有x2+3y2=3,即點(diǎn)M(x,y)的軌跡C的方程為+y2=1.(2)由得(1+3k2)x2+6kmx+3(m2-1)=0.∵曲線C與直線y=kx+m(k≠0)相交于不同的兩點(diǎn),∴Δ=(6km)2-12(1+3k2)(m2-1)=12(3k2-m2+1)>0,即3k2-m2+1>0①,且x1+x2=,x1x2=.設(shè)P(x1,y1),Q(x2,y2),線段PQ的中點(diǎn)N(x0,y0),則.∵|AP|=|AQ|,即知PQ⊥AN,設(shè)kAN表示直線AN的斜率,又k≠0,∴kANk=-1.即·k=-1,得3k2=2m-1②,而3k2>0,有m>.將②代入①得2m1m2+1>0,即2m<0,解得0<m<2,∴m的取值范圍為.【點(diǎn)睛】思路點(diǎn)睛:1、由向量垂直,結(jié)合其坐標(biāo)表示得到關(guān)于x,y的方程,寫出曲線C
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國(guó)戶外運(yùn)動(dòng)光學(xué)產(chǎn)品行業(yè)并購(gòu)重組擴(kuò)張戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)智能卡芯片行業(yè)全國(guó)市場(chǎng)開(kāi)拓戰(zhàn)略制定與實(shí)施研究報(bào)告
- 新形勢(shì)下風(fēng)機(jī)塔架行業(yè)可持續(xù)發(fā)展戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)產(chǎn)業(yè)園區(qū)物業(yè)管理行業(yè)營(yíng)銷創(chuàng)新戰(zhàn)略制定與實(shí)施研究報(bào)告
- 建設(shè)書(shū)香校園活動(dòng)方案
- 校園西裝調(diào)查問(wèn)卷
- 建設(shè)功臣事跡材料
- 2025年教育學(xué)試題答案
- 食品保鮮膜知識(shí)培訓(xùn)課件
- 西藏林芝市2023-2024學(xué)年九年級(jí)上學(xué)期期末考試化學(xué)試題
- 專項(xiàng)債券培訓(xùn)課件
- CNAS-CL01-G001:2024檢測(cè)和校準(zhǔn)實(shí)驗(yàn)室能力認(rèn)可準(zhǔn)則的應(yīng)用要求
- 校園重點(diǎn)防火部位消防安全管理規(guī)定(3篇)
- 臨時(shí)施工圍擋安全應(yīng)急預(yù)案
- ICP-網(wǎng)絡(luò)與信息安全保障措施-1.信息安全管理組織機(jī)構(gòu)設(shè)置及工作職責(zé)
- 2024城市河湖底泥污染狀況調(diào)查評(píng)價(jià)技術(shù)導(dǎo)則
- MT-T 1199-2023 煤礦用防爆柴油機(jī)無(wú)軌膠輪運(yùn)輸車輛通用安全技術(shù)條件
- 一年級(jí)上學(xué)期語(yǔ)文期末試卷分析一年級(jí)上冊(cè)語(yǔ)文試卷
- C4支持學(xué)生創(chuàng)造性學(xué)習(xí)與表達(dá)作業(yè)1-設(shè)計(jì)方案
- Q∕SY 01330-2020 井下作業(yè)現(xiàn)場(chǎng)監(jiān)督規(guī)范
- 醫(yī)院關(guān)于不合理醫(yī)療檢查專項(xiàng)治理自查自查自糾總結(jié)
評(píng)論
0/150
提交評(píng)論