合肥市重點中學2024屆數(shù)學高二上期末達標檢測模擬試題含解析_第1頁
合肥市重點中學2024屆數(shù)學高二上期末達標檢測模擬試題含解析_第2頁
合肥市重點中學2024屆數(shù)學高二上期末達標檢測模擬試題含解析_第3頁
合肥市重點中學2024屆數(shù)學高二上期末達標檢測模擬試題含解析_第4頁
合肥市重點中學2024屆數(shù)學高二上期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

合肥市重點中學2024屆數(shù)學高二上期末達標檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線與圓相交于、兩點,且(其中為原點),則的值為()A. B.C. D.2.直線的一個方向向量為,則它的斜率為()A. B.C. D.3.阿基米德(公元前287年~公元前212年)不僅是著名的物理學家,也是著名的數(shù)學家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓的對稱軸為坐標軸,焦點在軸上,且橢圓的離心率為,面積為,則橢圓的標準方程為()A. B.C. D.4.設是數(shù)列的前項和,已知,則數(shù)列()A.是等比數(shù)列,但不是等差數(shù)列 B.是等差數(shù)列,但不是等比數(shù)列C.是等比數(shù)列,也是等差數(shù)列 D.既不是等差數(shù)列,也不是等比數(shù)列5.在正方體的12條棱中任選3條,其中任意2條所在的直線都是異面直線的概率為()A. B.C. D.6.記等比數(shù)列的前項和為,若,,則()A.12 B.18C.21 D.277.直線的傾斜角的大小為A. B.C. D.8.已知,則的最小值是()A.3 B.8C.12 D.209.某軟件研發(fā)公司對某軟件進行升級,主要是對軟件程序中的某序列重新編輯,編輯新序列為,它的第項為,若序列的所有項都是1,且,.記數(shù)列的前項和、前項積分別為,,若,則的最小值為()A.2 B.3C.4 D.510.命題若,且,則,命題在中,若,則.下列命題中為真命題的是()A. B.C. D.11.已知等差數(shù)列的前項和為,若,則()A B.C. D.12.瑞士數(shù)學家歐拉(LeonhardEuler)1765年在其所著的《三角形的幾何學》一書中提出:任意三角形的外心、重心、垂心在同一條直線上.后人稱這條直線為歐拉線.已知△ABC的頂點,其歐拉線方程為,則頂點C的坐標是()A.() B.()C.() D.()二、填空題:本題共4小題,每小題5分,共20分。13.設點是雙曲線上的一點,、分別是雙曲線的左、右焦點,已知,且,則雙曲線的離心率為________14.已知數(shù)列滿足,,則使得成立的n的最小值為__________.15.圓上的點到直線的距離的最大值為__________.16.如圖,棱長為2的正方體中,E,F(xiàn)分別為棱、的中點,G為面對角線上一個動點,則三棱錐的外接球表面積的最小值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知命題p:“,”為假命題,命題q:“實數(shù)滿足”.若是真命題,是假命題,求的取值范圍18.(12分)已知橢圓的中心在原點,焦點在軸上,離心率等于,它的一個頂點恰好是拋物線的焦點.(1)求橢圓的標準方程;(2)已知直線與橢圓交于、兩點,、是橢圓上位于直線兩側的動點,且直線的斜率為,求四邊形面積的最大值.19.(12分)已知橢圓()與橢圓的焦點相同,且橢圓C過點(1)求橢圓C的方程;(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓C恒有兩個交點A,B,且,(O為坐標原點),若存在,求出該圓的方程;若不存在,說明理由;(3)P是橢圓C上異于上頂點,下頂點的任一點,直線,,分別交x軸于點N,M,若直線OT與過點M,N的圓G相切,切點為T.證明:線段OT的長為定值,并求出該定值20.(12分)已知直線l:,圓C:.(1)當時,試判斷直線l與圓C的位置關系,并說明理由;(2)若直線l被圓C截得的弦長恰好為,求k的值.21.(12分)已知函數(shù)在處的切線方程為.(1)求的解析式;(2)求函數(shù)圖象上的點到直線的距離的最小值.22.(10分)已知函數(shù),求(1)(2)(3)曲線在處的切線方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】分析出為等腰直角三角形,可得出原點到直線的距離,利用點到直線的距離公式可得出關于的等式,由此可解得的值.【詳解】圓的圓心為原點,由于且,所以,為等腰直角三角形,且圓心到直線的距離為,由點到直線的距離公式可得,解得.故選:D.【點睛】關鍵點點睛:本題考查利用圓周角求參數(shù),解題的關鍵在于求出弦心距,再利用點到直線的距離公式列方程求解參數(shù).2、A【解析】根據(jù)的方向向量求得斜率.【詳解】且是直線的方向向量,.故選:A3、C【解析】由題意,設出橢圓的標準方程為,然后根據(jù)橢圓的離心率以及橢圓面積列出關于的方程組,求解方程組即可得答案【詳解】由題意,設橢圓的方程為,由橢圓的離心率為,面積為,∴,解得,∴橢圓的方程為,故選:C.4、B【解析】根據(jù)與的關系求出通項,然后可知答案.【詳解】當時,,當時,,綜上,的通項公式為,數(shù)列為等差數(shù)列同理,由等比數(shù)列定義可判斷數(shù)列不是等比數(shù)列.故選:B5、B【解析】根據(jù)正方體的性質確定3條棱兩兩互為異面直線的情況數(shù),結合組合數(shù)及古典概率的求法,求任選3條其中任意2條所在的直線是異面直線的概率.【詳解】如下圖,正方體中如:中任意2條所在的直線都是異面直線,∴這樣的3條直線共有8種情況,∴任選3條,其中任意2條所在的直線都是異面直線的概率為.故選:B.6、C【解析】根據(jù)等比數(shù)列的性質,可知等比數(shù)列的公比,所以成等比數(shù)列,根據(jù)等比的中項性質即可求出結果.【詳解】因為為等比數(shù)列的前項和,且,,易知等比數(shù)列的公比,所以成等比數(shù)列所以,所以,解得.故選:C7、A【解析】考點:直線的傾斜角專題:計算題分析:因為直線的斜率是傾斜角的正切值,所以欲求直線的傾斜角,只需求出直線的斜率即可,把直線化為斜截式,可得斜率,問題得解解答:解:∵x-y+1=0可化為y=x+,∴斜率k=設傾斜角為θ,則tanθ=k=,θ∈[0,π)∴θ=故選A點評:本題主要考查了直線的傾斜角與斜率之間的關系,屬于直線方程的基礎題型,需要學生對基礎知識熟練掌握8、A【解析】利用基本不等式進行求解即可.【詳解】因為,所以,當且僅當時取等號,即當時取等號,故選:A9、C【解析】先利用序列的所有項都是1,得到,整理后得到是等比數(shù)列,進而求出公比和首項,從而求出和,利用,列出不等式,求出,從而得到的最小值【詳解】因為,,所以,又序列的所有項都是1,所以它的第項,所以,所以數(shù)列是等比數(shù)列,又,,所以公比,.所以,,,要,即,即,所以,所以,,所以最小值為4.故選:C.10、A【解析】根據(jù)不等式性質及對數(shù)函數(shù)的單調性判斷命題的真假,根據(jù)大角對大邊及正弦定理可判斷命題的真假,再根據(jù)復合命題真假的判斷方法即可得出結論.【詳解】解:若,且,則,當時,,所以,當時,,所以,綜上命題為假命題,則為真命題,在中,若,則,由正弦定理得,所以命題為真命題,為假命題,所以為真命題,,,為假命題.故選:A.11、B【解析】利用等差數(shù)列的性質可求得的值,再結合等差數(shù)列求和公式以及等差中項的性質可求得的值.【詳解】由等差數(shù)列的性質可得,則,故.故選:B.12、A【解析】根據(jù)題意,求得的外心,再根據(jù)外心的性質,以及重心的坐標,聯(lián)立方程組,即可求得結果.【詳解】因為,故的斜率,又的中點坐標為,故的垂直平分線的方程為,即,故△的外心坐標即為與的交點,即,不妨設點,則,即;又△的重心的坐標為,其滿足,即,也即,將其代入,可得,,解得或,對應或,即或,因為與點重合,故舍去.故點的坐標為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由雙曲線的定義可求得、,利用勾股定理可得出關于、的齊次等式,進而可求得該雙曲線的離心率.【詳解】由雙曲線定義可得,故,由勾股定理可得,即,可得,因此,該雙曲線的離心率為.故答案為:.14、11【解析】由題設可得,結合等比數(shù)列的定義知從第二項開始是公比為2的等比數(shù)列,進而寫出的通項公式,即可求使成立的最小值n.【詳解】因為,所以,兩式相除得,整理得.因為,故從第二項開始是等比數(shù)列,且公比為2,因為,則,所以,則,由得:,故故答案為:11.15、【解析】先求得圓心到直線的距離,結合圓上的點到直線的距離的最大值為,即可求解.【詳解】由題意,圓的圓心坐標為,半徑為,則圓心到直線的距離為,所以圓上的點到直線的距離的最大值為.故答案為:16、【解析】以DA,DC,分別為x軸,y軸,z軸建系,則,設,球心,得到外接球半徑關于的函數(shù)關系,求出的最小值,即可得到答案;【詳解】解:以DA,DC,分別為x軸,y軸,z軸建系.則,設,球心,,又.聯(lián)立以上兩式,得,所以時,,為最小值,外接球表面積最小值為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、或【解析】先假設命題、為真,分別求得實數(shù)的取值范圍,再由命題、具體的真假,取實數(shù)的取值范圍或其補集,最終確定實數(shù)的取值范圍.【詳解】若命題p為真,則“,”為假命題則,恒成立∴恒成立,即∴,∴.若命題q為真,則,即∴∴∵是真命題,是假命題∴命題、必為一真一假.①當p真q假時,∴;②當p假q真時,∴.綜上所述:a的取值范圍是或.18、(1)(2)【解析】(1)根據(jù)離心率的定義以及橢圓與拋物線焦點的關系,可以求出橢圓方程;(2)根據(jù)題意,可以利用鉛錘底水平高的方法求四邊形APBQ的面積,即是要利用韋達定理算出.【小問1詳解】由題意,即;拋物線,焦點為,故,所以橢圓C的標準方程為:.【小問2詳解】由題意作圖如下:設AB直線的方程為:,并設點,,聯(lián)立方程:得:,∴……①,……②,;由于A,B兩點在直線PQ的兩邊(如上圖),所以,即,將①②帶入得:,解得;即由題意直線PQ的方程為,聯(lián)立方程解得,,∴;將線段PQ看做鉛錘底,A,B兩點的橫坐標之差看做水平高,得四邊形APBQ的面積為:,當且僅當m=0時取最大值,而,所以的最大值為.19、(1);(2)存在,;(3)證明見解析,定值2【解析】(1)根據(jù)已知條件,用待定系數(shù)解方程組即可得到C的方程;(2)設出AB的方程,與橢圓方程聯(lián)立,得到根與系數(shù)關系,代入由確定方程內即可得到結果;(3)設P點坐標,求出M和N坐標,設出圓G的圓心坐標,求得圓的半徑,由垂徑定理求得切線長|OT|,結合P在橢圓上可證|OT|為定值﹒【小問1詳解】設橢圓C的方程為將點代入橢圓方程有點解得,(舍)∴橢圓的方程為;【小問2詳解】設,當AB斜率存在時,設,代入,整理得,由得,即,由韋達定理化簡得,即,設存在圓與直線相切,則,解得,∴圓的方程為;又若AB斜率不存在時,檢驗知滿足條件,故存在圓心在原點的圓符合題意;【小問3詳解】如圖:,,設,直線,令,得;直線,令,得;解法一:設圓G的圓心為,則,,,而,∴,∴,∴,即線段OT長度為定值2解法二:,而,∴,∴由切割線定理得.∴,即線段OT的長度為定值220、(1)相離,理由見解析;(2)0或【解析】(1)求出圓心到直線的距離和半徑比較即可判斷;(2)求出圓心到直線的距離,利用弦長計算即可得出.【詳解】(1)圓C:的圓心為,半徑為2,當時,線l:,則圓心到直線的距離為,直線l與圓C相離;(2)圓心到直線的距離為,弦長為,則,解得或.21、(1);(2).【解析】(1)由題可得,然后利用導數(shù)的幾何意義即求;(2)由題可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論