江蘇省南京師范大學連云港華杰實驗學校2023-2024學年高二上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第1頁
江蘇省南京師范大學連云港華杰實驗學校2023-2024學年高二上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第2頁
江蘇省南京師范大學連云港華杰實驗學校2023-2024學年高二上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第3頁
江蘇省南京師范大學連云港華杰實驗學校2023-2024學年高二上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第4頁
江蘇省南京師范大學連云港華杰實驗學校2023-2024學年高二上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇省南京師范大學連云港華杰實驗學校2023-2024學年高二上數(shù)學期末教學質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓,為圓外的任意一點,過點引圓的兩條切線、,使得,其中、為切點.在點運動的過程中,線段所掃過圖形的面積為()A. B.C. D.2.下列命題中,真命題的個數(shù)為()(1)是為雙曲線的充要條件;(2)若,則;(3)若,,則;(4)橢圓上的點距點最近的距離為;A.個 B.個C.個 D.個3.《九章算術》與《幾何原本》并稱現(xiàn)代數(shù)學的兩大源泉.在《九章算術》卷五商功篇中介紹了羨除(此處是指三面為等腰梯形,其他兩側面為直角三角形的五面體)體積的求法.在如圖所示的羨除中,平面是鉛垂面,下寬,上寬,深,平面BDEC是水平面,末端寬,無深,長(直線到的距離),則該羨除的體積為()A. B.C. D.4.已知橢圓,則橢圓的長軸長為()A.2 B.4C. D.85.一道數(shù)學試題,甲、乙兩位同學獨立完成,設命題是“甲同學解出試題”,命題是“乙同學解出試題”,則命題“至少一位同學解出試題”可表示為()A. B.C. D.6.雙曲線型自然通風塔外形是雙曲線的一部分繞其虛軸旋轉(zhuǎn)所成的曲面,如圖所示,它的最小半徑為米,上口半徑為米,下口半徑為米,高為24米,則該雙曲線的離心率為()A.2 B.C. D.7.已知,是橢圓的左,右焦點,是的左頂點,點在過且斜率為的直線上,為等腰三角形,,則的離心率為A. B.C. D.8.已知橢圓C:的兩個焦點分別為,,橢圓C上有一點P,則的周長為()A.8 B.10C. D.129.已知橢圓:與雙曲線:有相同的焦點、,橢圓的離心率為,雙曲線的離心率為,點P為橢圓與雙曲線的交點,且,則的最大值為()A. B.C. D.10.如圖,在平行六面體中,,則與向量相等的是()A. B.C. D.11.已知函數(shù),則曲線在點處的切線方程為()A. B.C. D.12.在△ABC中,角A,B,C的對邊分別為a,b,c,若,則△ABC()A.一定是銳角三角形 B.一定是直角三角形C.一定是鈍角三角形 D.是銳角或直角三角形二、填空題:本題共4小題,每小題5分,共20分。13.若等比數(shù)列的前n項和為,且,則__________.14.圓的圓心坐標為___________;半徑為___________.15.拋物線的焦點坐標是______.16.函數(shù)極值點的個數(shù)是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知在公差不為0的等差數(shù)列中,,且構成等比數(shù)列的前三項(1)求數(shù)列,的通項公式;(2)設數(shù)列___________,求數(shù)列的前項和請在①;②;③這三個條件中選擇一個,補充在上面的橫線上,并完成解答18.(12分)設圓的圓心為A,直線l過點且與x軸不重合,l交圓A于C,D兩點,過B作AC的平行線交AD于點E(1)判斷與題中圓A的半徑的大小關系,并寫出點E的軌跡方程;(2)過點作斜率為,的兩條直線,分別交點E的軌跡于M,N兩點,且,證明:直線MN必過定點19.(12分)已知函數(shù),是的一個極值點.(1)求b的值;(2)當時,求函數(shù)的最大值.20.(12分)已知函數(shù)(Ⅰ)求的單調(diào)區(qū)間和最值;(Ⅱ)設,證明:當時,21.(12分)在等差數(shù)列中,已知公差,且成等比數(shù)列(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和22.(10分)已知圓(1)求圓心的坐標和圓的面積;(2)若直線與圓相交于兩點,求弦長

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】連接、、,分析可知四邊形為正方形,求出點的軌跡方程,分析可知線段所掃過圖形為是夾在圓和圓的圓環(huán),利用圓的面積公式可求得結果.【詳解】連接、、,由圓的幾何性質(zhì)可知,,又因為且,故四邊形為正方形,圓心,半徑為,則,故點的軌跡方程為,所以,線段掃過的圖形是夾在圓和圓的圓環(huán),故在點運動的過程中,線段所掃過圖形的面積為.故選:D.2、A【解析】利用方程表示雙曲線求出的取值范圍,利用集合的包含關系可判斷(1)的正誤;直接判斷命題的正誤,可判斷(2)的正誤;利用空間向量垂直的坐標表示可判斷(3)的正誤;利用橢圓的有界性可判斷(4)的正誤.【詳解】對于(1),若曲線為雙曲線,則,即,解得或,因為或,因此,是為雙曲線的充分不必要條件,(1)錯;對于(2),若,則或,(2)錯;對于(3),,則,(3)對;對于(4),設點為橢圓上一點,則且,則點到點的距離為,(4)錯.故選:A.3、C【解析】在,上分別取點,,使得,連接,,,把幾何體分割成一個三棱柱和一個四棱錐,然后由棱柱、棱錐體積公式計算【詳解】如圖,在,上分別取點,,使得,連接,,,則三棱柱是斜三棱柱,該羨除的體積三棱柱四棱錐.故選:C【點睛】思路點睛:本題考查求空間幾何體的體積,解題思路是觀察幾何體的結構特征,合理分割,將不規(guī)則幾何體體積的計算轉(zhuǎn)化為錐體、柱體體積的計算.考查了空間想象能力、邏輯思維能力、運算求解能力4、B【解析】根據(jù)橢圓的方程求出即得解.【詳解】解:由題得橢圓的所以橢圓的長軸長為.故選:B5、D【解析】根據(jù)“或命題”的定義即可求得答案.【詳解】“至少一位同學解出試題”的意思是“甲同學解出試題,或乙同學解出試題”.故選:D.6、A【解析】以的中點О為坐標原點,建立平面直角坐標系,設雙曲線的方程為,設,,代入雙曲線的方程,求得,得到,進而求得雙曲線的離心率.【詳解】以的中點О為坐標原點,建立如圖所示的平面直角坐標系,則,設雙曲線的方程為,則,可設,,又由,在雙曲線上,所以,解得,,即,所以該雙曲線的離心率為.故選:A.第II卷7、D【解析】分析:先根據(jù)條件得PF2=2c,再利用正弦定理得a,c關系,即得離心率.詳解:因為等腰三角形,,所以PF2=F1F2=2c,由斜率為得,,由正弦定理得,所以,故選D.點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關鍵就是確立一個關于的方程或不等式,再根據(jù)的關系消掉得到的關系式,而建立關于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標的范圍等.8、B【解析】根據(jù)橢圓的定義可得:,所以的周長等于【詳解】因為,,所以,故的周長為故選:B9、B【解析】不妨設點為第一象限的交點,結合橢圓與雙曲線的定義得到,進而結合余弦定理得到,即,令然后結合三角函數(shù)即可求出結果.【詳解】不妨設點為第一象限的交點,則由橢圓的定義可得,由雙曲線的定義可得,所以,因此,即,所以,即,令因此,其中,所以當時,有最大值,最大值為,故選:B.【點睛】一、橢圓的離心率是橢圓最重要的幾何性質(zhì),求橢圓的離心率(或離心率的取值范圍),常見有兩種方法:①求出a,c,代入公式;②只需要根據(jù)一個條件得到關于a,b,c的齊次式,結合b2=a2-c2轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉(zhuǎn)化為關于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)二、雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出a,c,代入公式;②只需要根據(jù)一個條件得到關于a,b,c的齊次式,結合b2=c2-a2轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉(zhuǎn)化為關于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)10、A【解析】根據(jù)空間向量的線性運算法則——三角形法,準確運算,即可求解.【詳解】由題意,在平行六面體中,,可得.故選:A.11、A【解析】求出函數(shù)的導函數(shù),再求出,然后利用導數(shù)的幾何意義求解作答.【詳解】函數(shù),求導得:,則,而,于是得:,即,所以曲線在點處的切線方程為.故選:A12、C【解析】由余弦定理確定角的范圍,從而判斷出三角形形狀【詳解】由得-cosC>0,所以cosC<0,從而C為鈍角,因此△ABC一定是鈍角三角形.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】根據(jù)題意和等比數(shù)列的求和公式,求得,結合求和公式,即可求解.【詳解】因為,若時,可得,故,所以,化簡得,整理得,解得或,因為,解得,所以.故答案為:.14、①.②.【解析】配方后可得圓心坐標和半徑【詳解】將圓的一般方程化為圓標準方程是,圓心坐標為,半徑為故答案為:;15、【解析】將拋物線的方程化為標準形式,即可求解出焦點坐標.【詳解】因為拋物線方程,焦點坐標為,且,所以焦點坐標為,故答案為:.16、0【解析】通過導數(shù)判斷函數(shù)的單調(diào)性即可得極值點的情況.【詳解】因為,,所以在上恒成立,所以在上單調(diào)遞增,所以函數(shù)的極值點的個數(shù)是0,故答案為:0.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)答案見解析【解析】(1)設的公差為,根據(jù)等比中項的性質(zhì)得到,即可求,從而求出的通項公式,所以,即可求出等比數(shù)列的公比,從而求出的通項公式;(2)若選①:則,利用裂項相消法求和即可;若選②:則,根據(jù)等比數(shù)列求和公式計算可得;若選③:則利用分組求和法求和即可;【小問1詳解】解:設的公差為,成等比數(shù)列,,,解得或,,,即,,的公比,,【小問2詳解】解:若選①:則,;若選②:則,;若選③:則,.18、(1)與半徑相等,(2)證明見解析【解析】(1)依據(jù)橢圓定義去求點E的軌跡方程事半功倍;(2)直線MN要分為斜率存在的和不存在的兩種情況進行討論,由設而不求法把條件轉(zhuǎn)化為直線MN過定點的條件即可解決.【小問1詳解】圓即為,可得圓心,半徑,由,可得,由,可得,即為,即有,則,所以其與半徑相等.因為,故E的軌跡為以A,B為焦點的橢圓(不包括左右頂點),且有,,即,,,則點E的軌跡方程為;【小問2詳解】當直線MN斜率不存在時,設直線方程為,則,,,,則,∴,此時直線MN的方程為當直線MN斜率存在時,設直線方程為:,與橢圓方程聯(lián)立:,得,設,,有則將*式代入化簡可得:,即,∴,此時直線MN:,恒過定點又直線MN斜率不存在時,直線MN:也過,故直線MN過定點.【點睛】數(shù)形結合是數(shù)學解題中常用的思想方法,數(shù)形結合的思想可以使某些抽象的數(shù)學問題直觀化、生動化,能夠變抽象思維為形象思維,有助于把握數(shù)學問題的本質(zhì);另外,由于使用了數(shù)形結合的方法,很多問題便迎刃而解,且解法簡捷。19、(1);(2)【解析】(1)先求出導函數(shù),再根據(jù)x=2是的一個極值點對應x=2是導數(shù)為0的根即可求b的值;(2)根據(jù)(1)的結論求出函數(shù)的極值點,通過比較極值與端點值的大小從而確定出最大值.【小問1詳解】由題設,.∵x=2是的一個極值點,∴x=2是的一個根,代入解得:.經(jīng)檢驗,滿足題意.【小問2詳解】由(1)知:,則.令,解得x=1或x=2.x1(1,2)2(2,3)30﹣0+遞減遞增∵當x∈(1,2)時,即在(1,2)上單調(diào)遞減;當x∈(2,3)時,即在(2,3)上單調(diào)遞增.∴當x∈[1,3]時,函數(shù)的最大值為與中的較大者.∴函數(shù)的最大值為.20、(Ⅰ)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;最小值為,無最大值;(Ⅱ)證明見解析【解析】(Ⅰ)根據(jù)導函數(shù)的正負即可確定單調(diào)區(qū)間,由單調(diào)性可得最值點;(Ⅱ)構造函數(shù),利用導數(shù)可確定單調(diào)性,結合的正負可確定的零點的范圍,進而得到結論.【詳解】(Ⅰ)由題意得:定義域為,,當時,;當時,;的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為的最小值為,無最大值(Ⅱ)設,則,令得:當時,;當時,,在上單調(diào)遞增;在上單調(diào)遞減由(Ⅰ)知:,可得:,,可得:,即又,當時,,即當時,【點睛】思路點睛:本題考查導數(shù)在研究函數(shù)中的應用,涉及到函數(shù)單調(diào)性和最值的求解、利用導數(shù)證明不等式等知識;利用導數(shù)證明不等式的關鍵是能夠通過移項構造的方式,構造出新的函數(shù),通過的單調(diào)性,結合零點所處的范圍可分析得到結果.21、(1)an=n(2)【解析】(1)由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論