遼寧省遼源市鼎高級中學(xué)2024屆高二上數(shù)學(xué)期末經(jīng)典試題含解析_第1頁
遼寧省遼源市鼎高級中學(xué)2024屆高二上數(shù)學(xué)期末經(jīng)典試題含解析_第2頁
遼寧省遼源市鼎高級中學(xué)2024屆高二上數(shù)學(xué)期末經(jīng)典試題含解析_第3頁
遼寧省遼源市鼎高級中學(xué)2024屆高二上數(shù)學(xué)期末經(jīng)典試題含解析_第4頁
遼寧省遼源市鼎高級中學(xué)2024屆高二上數(shù)學(xué)期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

遼寧省遼源市鼎高級中學(xué)2024屆高二上數(shù)學(xué)期末經(jīng)典試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知f(x)=x3+(a-1)x2+x+1沒有極值,則實數(shù)a的取值范圍是()A.[0,1] B.(-∞,0]∪[1,+∞)C.[0,2] D.(-∞,0]∪[2,+∞)2.已知為原點,點,以為直徑的圓的方程為()A. B.C. D.3.若曲線f(x)=x2的一條切線l與直線平行,則l的方程為()A.4x-y-4=0 B.x+4y-5=0C.x-4y+3=0 D.4x+y+4=04.已知雙曲線E的漸近線為,則其離心率為()A. B.C. D.或5.橢圓的短軸長為()A.8 B.2C.4 D.6.阿基米德不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓的面積公式,設(shè)橢圓的長半軸長、短半軸長分別為,則橢圓的面積公式為,若橢圓的離心率為,面積為,則橢圓的標(biāo)準(zhǔn)方程為()A.或 B.或C.或 D.或7.若正三棱柱的所有棱長都相等,D是的中點,則直線AD與平面所成角的正弦值為A. B.C. D.8.準(zhǔn)線方程為的拋物線的標(biāo)準(zhǔn)方程為()A. B.C. D.9.拋擲兩枚質(zhì)地均勻的硬幣,設(shè)事件“第一枚硬幣正面朝上”,事件“第二枚硬幣反面朝上”,則下列結(jié)論中正確的為()A.與互為對立事件 B.與互斥C與相等 D.10.已知角的頂點與坐標(biāo)原點重合,始邊與x軸的非負半軸重合,角終邊上有一點,為銳角,且,則()A. B.C. D.11.已知,則下列不等式一定成立的是()A. B.C. D.12.已知等比數(shù)列中,,,則公比()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),向量,,,且,,則___________.14.千年一遇對稱日,萬事圓滿在今朝,年月日又是一個難得的“世界完全對稱日”(公歷紀(jì)年日期中數(shù)字左右完全對稱的日期).數(shù)學(xué)上把這樣的對稱自然數(shù)叫回文數(shù),兩位數(shù)的回文數(shù)共有個(),其中末位是奇數(shù)的又叫做回文奇數(shù),則在內(nèi)的回文奇數(shù)的個數(shù)為___15.寫出一個離心率且焦點在軸上的雙曲線的標(biāo)準(zhǔn)方程________,并寫出該雙曲線的漸近線方程________16.在長方體中,若,,則異面直線與所成角的大小為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:的上頂點與橢圓的左右頂點連線的斜率之積為-.(1)求橢圓C的離心率(2)點M(,)在橢圓C上,橢圓的左頂點為D,上頂點為B,點A的坐標(biāo)為(1,0),過點D的直線L與橢圓在第一象限交于點P,與直線AB交于點Q設(shè)L的斜率為k,若,求k的值.18.(12分)已知拋物線的焦點為,直線與拋物線交于,兩點,且(1)求拋物線的方程;(2)若,是拋物線上一點,過點的直線與拋物線交于,兩點(均與點不重合),設(shè)直線,的斜率分別為,,求證:為定值19.(12分)已知橢圓的一個焦點是,且離心率.(1)求橢圓的方程;(2)設(shè)過點的直線交于兩點,線段的垂直平分線交軸于點,求的取值范圍.20.(12分)已知橢圓C:經(jīng)過點,且離心率為(1)求橢圓C的方程;(2)是否存在⊙O:,使得⊙O的任意切線l與橢圓交于A,B兩點,都有.若存在,求出r的值,并求此時△AOB的面積S的取值范圍;若不存在,請說明理由21.(12分)已知圓,直線(1)判斷直線與圓的位置關(guān)系;(2)若直線與圓交于不同兩點,且,求直線的方程22.(10分)已知在時有極值0.(1)求常數(shù),的值;(2)求在區(qū)間上的最值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】求導(dǎo)得,再解不等式即得解.【詳解】由得,根據(jù)題意得,解得故選:C2、A【解析】求圓的圓心和半徑,根據(jù)圓的標(biāo)準(zhǔn)方程即可求解﹒【詳解】由題知圓心為,半徑,∴圓方程為﹒故選:A﹒3、D【解析】設(shè)切點為,則切線的斜率為,然后根據(jù)條件可得的值,然后可得答案.【詳解】設(shè)切點為,因為,所以切線的斜率為因為曲線f(x)=x2的一條切線l與直線平行,所以,即所以l的方程為,即故選:D4、D【解析】根據(jù)雙曲線標(biāo)準(zhǔn)方程與漸近線的關(guān)系即可求解.【詳解】當(dāng)雙曲線焦點在x軸上時,漸近線為,故離心率為;當(dāng)雙曲線焦點在y軸上時,漸近線為,故離心率為;故選:D.5、C【解析】根據(jù)橢圓的標(biāo)準(zhǔn)方程求出,進而得出短軸長.【詳解】由,可得,所以短軸長為.故選:C.6、B【解析】根據(jù)題意列出的關(guān)系式,即可求得,再分焦點在軸與軸兩種情況寫出標(biāo)準(zhǔn)方程.【詳解】根據(jù)題意,可得,所以橢圓的標(biāo)準(zhǔn)方程為或.故選:B7、A【解析】建立空間直角坐標(biāo)系,得到相關(guān)點的坐標(biāo)后求出直線的方向向量和平面的法向量,借助向量的運算求出線面角的正弦值【詳解】取AC的中點為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系設(shè)三棱柱的棱長為2,則,∴設(shè)為平面的一個法向量,由故令,得設(shè)直線AD與平面所成角為,則,所以直線AD與平面所成角的正弦值為故選A【點睛】空間向量的引入為解決立體幾何問題提供了較好的方法,解題時首先要建立適當(dāng)?shù)淖鴺?biāo)系,得到相關(guān)點的坐標(biāo)后借助向量的運算,將空間圖形的位置關(guān)系或數(shù)量關(guān)系轉(zhuǎn)化為向量的運算處理.在解決空間角的問題時,首先求出向量夾角的余弦值,然后再轉(zhuǎn)化為所求的空間角.解題時要注意向量的夾角和空間角之間的聯(lián)系和區(qū)別,避免出現(xiàn)錯誤8、D【解析】的準(zhǔn)線方程為.【詳解】的準(zhǔn)線方程為.故選:D.9、D【解析】利用互斥事件和對立事件的定義分析判斷即可【詳解】因為拋擲兩枚質(zhì)地均勻的硬幣包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣正面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上,4種情況,其中事件包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上2種情況,事件包含第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上2種情況,所以與不互斥,也不對立,也不相等,,所以ABC錯誤,D正確,故選:D10、C【解析】根據(jù)角終邊上有一點,得到,再根據(jù)為銳角,且,求得,再利用兩角差的正切函數(shù)求解.【詳解】因為角終邊上有一點,所以,又因為為銳角,且,所以,所以,故選:C11、B【解析】運用不等式的性質(zhì)及舉反例的方法可求解.詳解】對于A,如,滿足條件,但不成立,故A不正確;對于B,因為,所以,所以,故B正確;對于C,因為,所以,所以不成立,故C不正確;對于D,因為,所以,所以,故D不正確.故選:B12、C【解析】利用等比中項的性質(zhì)可求得的值,再由可求得結(jié)果.【詳解】由等比中項的性質(zhì)可得,解得,又,,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】利用向量平行和向量垂直的性質(zhì)列出方程組,求出,,再由空間向量坐標(biāo)運算法則求出,由此能求出【詳解】解:設(shè),,向量,,,且,,,解得,,所以,,,故答案為:14、【解析】根據(jù)分類加法計數(shù)原理,結(jié)合題中定義、組合的定義進行求解即可.【詳解】兩位數(shù)的回文奇數(shù)有,共個,三位數(shù)的回文奇數(shù)有,四位數(shù)的回文奇數(shù)有,所以在內(nèi)的回文奇數(shù)的個數(shù)為,故答案為:15、①.(答案不唯一)②.(答案不唯一)【解析】令雙曲線為,根據(jù)離心率可得,結(jié)合雙曲線參數(shù)關(guān)系寫出一個符合要求的雙曲線方程,進而寫出對應(yīng)的漸近線方程.【詳解】由題設(shè),可令雙曲線為且,∴,則,故為其中一個標(biāo)準(zhǔn)方程,此時漸近線方程為.故答案為:,(答案不唯一).16、【解析】畫出長方體,再將異面直線與利用平行線轉(zhuǎn)移到一個三角形內(nèi)求解角度即可.【詳解】畫出長方體可得異面直線與所成角為與之間的夾角,連接.則因為,則,又,故,又,故為等腰直角三角形,故,即異面直線與所成角的大小為故答案為【點睛】本題主要考查立體幾何中異面直線的角度問題,一般的處理方法是將異面直線經(jīng)過平行線的轉(zhuǎn)換構(gòu)成三角形求角度,屬于基礎(chǔ)題型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)1【解析】(1)根據(jù)橢圓的上頂點與橢圓的左右頂點連線的斜率之積為-,由求解;(2)根據(jù)點M(,)在橢圓C上,頂點,再由,求得橢圓方程,由,結(jié)合,得到,設(shè)直線方程為,與橢圓方程聯(lián)立,求得點P的坐標(biāo),再由,求得Q的坐標(biāo),代入求解.【小問1詳解】解:設(shè)橢圓C:的上頂點為,左頂點為,右頂點為,因為橢圓的上頂點與橢圓的左右頂點連線的斜率之積為-,所以,即,又所以,解得;【小問2詳解】因為點M(,)在橢圓C上,所以,又,解得,所以橢圓方程為,,則,因為,所以,又,所以,則,設(shè),則,當(dāng)時,則,不合題意;當(dāng)時,設(shè)直線方程為,與題意方程聯(lián)立,消去y得:則,所以,則,因為,由,得,因為,所以,化簡得,因,則.18、(1)(2)證明見解析【解析】(1)聯(lián)立直線和拋物線方程,根據(jù)拋物線定義和焦半徑公式得到,根據(jù)韋達定理可得到最終結(jié)果;(2)代入點坐標(biāo)可得到參數(shù)的值,設(shè)直線的方程為,聯(lián)立該直線和拋物線方程,,代入韋達定理可得到最終結(jié)果.【小問1詳解】設(shè)點,,點,,聯(lián)立,整理得,,由拋物線的定義知,解得,拋物線的方程為【小問2詳解】,為拋物線上一點,,即,設(shè),,,,直線的方程為,由,消去得,,,,即為定值19、(1)(2)【解析】(1)由條件可得,,然后可得答案;(2)設(shè)直線的方程為,,聯(lián)立直線與橢圓的方程消元,然后算出中點的坐標(biāo),然后可得線段的垂直平分線方程,然后可得,然后可求出答案.【小問1詳解】因為橢圓的一個焦點是,且離心率所以,,所以所以橢圓的方程為【小問2詳解】顯然直線的斜率不為0,設(shè)直線的方程為,聯(lián)立可得,所以所以中點的縱坐標(biāo)為,橫坐標(biāo)為所以線段的垂直平分線方程為令,可得當(dāng)時,當(dāng)時,,因為,所以綜上:20、(1)(2)存在,,【解析】(1)利用離心率和橢圓所過點列出方程組,求出,求出橢圓方程;(2)假設(shè)存在,分切線斜率存在和不存在分類討論,根據(jù)向量數(shù)量積為0求出r的值,表達出△AOB的面積,利用基本不等式求出的取值范圍,進而求出△AOB面積的取值范圍.【小問1詳解】因為橢圓C:的離心率,且過點所以解得所以橢圓C的方程為【小問2詳解】假設(shè)存在⊙O:滿足題意,①切線方程l的斜率存在時,設(shè)切線方程l:y=kx+m與橢圓方程聯(lián)立,消去y得,(*)設(shè),,由題意知,(*)有兩解所以,即由根與系數(shù)的關(guān)系可得,所以因為,所以,即化簡得,且,O到直線l的距離所以,又,此時,所以滿足題意所以存在圓的方程為⊙O:△AOB的面積,又因為當(dāng)k≠0時當(dāng)且僅當(dāng)即時取等號又因為,所以,所以當(dāng)k=0時,②斜率不存在時,直線與橢圓交于兩點或兩點易知存在圓的方程為⊙O:且綜上,所以【點睛】求解圓錐曲線相關(guān)的三角形或四邊形面積取值范圍問題,需要先設(shè)出變量,表達出面積,利用基本不等式或者配方,導(dǎo)函數(shù)等求出最值,求出取值范圍,特別注意直線斜率存在和不存在的情況,需要分類討論.21、(1)直線與圓相交;(2)或【解析】(1)通過比較圓心到直線的距離與半徑的關(guān)系,不難發(fā)現(xiàn)直線和圓相交.(2)根據(jù)垂徑定理,得到圓心與直線的距離,進而列方程求解即可試題解析:(1)將圓方程化為標(biāo)準(zhǔn)方程,所以圓的圓心,半徑,圓心到直線的距離,因此直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論