重慶市高2024屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第1頁
重慶市高2024屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第2頁
重慶市高2024屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第3頁
重慶市高2024屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第4頁
重慶市高2024屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

重慶市高2024屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知橢圓:與雙曲線:有相同的焦點(diǎn)、,橢圓的離心率為,雙曲線的離心率為,點(diǎn)P為橢圓與雙曲線的交點(diǎn),且,則的最大值為()A. B.C. D.2.設(shè)等差數(shù)列的前n項(xiàng)和為,若,,則()A.60 B.80C.90 D.1003.已知,,則等于()A.2 B.C. D.4.已知直線與圓交于兩點(diǎn),過分別作的垂線與軸交于兩點(diǎn),則A.2 B.3C. D.45.已知命題:,;命題:在中,若,則,則下列命題為真命題的是()A. B.C. D.6.過點(diǎn),且斜率為2的直線方程是A. B.C. D.7.拋物線有一條重要的性質(zhì):平行于拋物線的軸的光線,經(jīng)過拋物線上的一點(diǎn)反射后經(jīng)過它的焦點(diǎn).反之,從焦點(diǎn)發(fā)出的光線,經(jīng)過拋物線上的一點(diǎn)反射后,反射光線平行于拋物線的軸.已知拋物線,從點(diǎn)發(fā)出一條平行于x軸的光線,經(jīng)過拋物線兩次反射后,穿過點(diǎn),則光線從A出發(fā)到達(dá)B所走過的路程為()A.8 B.10C.12 D.148.下列說法正確的個(gè)數(shù)有()(ⅰ)命題“若,則”的否命題為:“若,則”;(ⅱ)“,”的否定為“,使得”;(ⅲ)命題“若,則有實(shí)根”為真命題;(ⅳ)命題“若,則”的否命題為真命題;A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)9.不等式的解集是()A. B.C.或 D.或10.?dāng)?shù)學(xué)美的表現(xiàn)形式不同于自然美或藝術(shù)美那樣直觀,它蘊(yùn)藏于特有的抽象概念,公式符號(hào),推理論證,思維方法等之中,揭示了規(guī)律性,是一種科學(xué)的真實(shí)美.平面直角坐標(biāo)系中,曲線:就是一條形狀優(yōu)美的曲線,對于此曲線,給出如下結(jié)論:①曲線圍成的圖形的面積是;②曲線上的任意兩點(diǎn)間的距離不超過;③若是曲線上任意一點(diǎn),則的最小值是其中正確結(jié)論的個(gè)數(shù)為()A. B.C. D.11.某班進(jìn)行了一次數(shù)學(xué)測試,全班學(xué)生的成績都落在區(qū)間內(nèi),其成績的頻率分布直方圖如圖所示,若該班學(xué)生這次數(shù)學(xué)測試成績的中位數(shù)的估計(jì)值為,則的值為()A. B.C. D.12.已知圓O的半徑為5,,過點(diǎn)P的2021條弦的長度組成一個(gè)等差數(shù)列,最短弦長為,最長弦長為,則其公差為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.圓與x軸相切于點(diǎn)A.點(diǎn)B在圓C上運(yùn)動(dòng),則AB的中點(diǎn)M的軌跡方程為______(當(dāng)點(diǎn)B運(yùn)動(dòng)到與A重合時(shí),規(guī)定點(diǎn)M與點(diǎn)A重合);點(diǎn)N是直線上一點(diǎn),則的最小值為______14.若命題“,使得”為假命題,則實(shí)數(shù)a的取值范圍是___________15.如圖的形狀出現(xiàn)存南宋數(shù)學(xué)家楊輝所著的《詳解九章算法·商功》中,后人稱為“三角垛”.“三角垛”的最一上層有1個(gè)球,第二層有3個(gè)球,第三層有6個(gè)球……,設(shè)從上至下各層球數(shù)構(gòu)成一個(gè)數(shù)列則___________.(填數(shù)字)16.函數(shù)的圖象在點(diǎn)處的切線方程為____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)的導(dǎo)函數(shù)為,且滿足(1)求及的值;(2)求在點(diǎn)處的切線方程18.(12分)已知為坐標(biāo)原點(diǎn),橢圓:的左、右焦點(diǎn)分別為,,右頂點(diǎn)為,上頂點(diǎn)為,若,,成等比數(shù)列,橢圓上的點(diǎn)到焦點(diǎn)的距離的最大值為求橢圓的標(biāo)準(zhǔn)方程;過該橢圓的右焦點(diǎn)作兩條互相垂直的弦與,求的取值范圍19.(12分)已知橢圓的左、右焦點(diǎn)分別為,,且橢圓過點(diǎn),離心率,為坐標(biāo)原點(diǎn),過且不平行于坐標(biāo)軸的動(dòng)直線與有兩個(gè)交點(diǎn),,線段的中點(diǎn)為.(1)求的標(biāo)準(zhǔn)方程;(2)記直線斜率為,直線的斜率為,證明:為定值;(3)軸上是否存在點(diǎn),使得為等邊三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.20.(12分)請你設(shè)計(jì)一個(gè)包裝盒,如圖所示,是邊長為的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得四個(gè)點(diǎn)重合于圖中的點(diǎn),正好形成一個(gè)長方體形狀的包裝盒,、在上是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)(1)求包裝盒的容積關(guān)于的函數(shù)表達(dá)式,并求出函數(shù)的定義域;(2)當(dāng)為多少時(shí),包裝盒的容積最大?最大容積是多少?21.(12分)已知橢圓過點(diǎn),且離心率.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若動(dòng)點(diǎn)在橢圓上,且在第一象限內(nèi),點(diǎn)分別為橢圓的左、右頂點(diǎn),直線分別與橢圓C交于點(diǎn),過作直線的平行線與橢圓交于點(diǎn),問直線是否過定點(diǎn),若經(jīng)過定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不經(jīng)過定點(diǎn),請說明理由.22.(10分)分別求出滿足下列條件的橢圓的標(biāo)準(zhǔn)方程:(1)焦點(diǎn)在y軸,短軸長為2,離心率為;(2)短軸一端點(diǎn)P與兩焦點(diǎn),連線所構(gòu)成的三角形為等邊三角形

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】不妨設(shè)點(diǎn)為第一象限的交點(diǎn),結(jié)合橢圓與雙曲線的定義得到,進(jìn)而結(jié)合余弦定理得到,即,令然后結(jié)合三角函數(shù)即可求出結(jié)果.【詳解】不妨設(shè)點(diǎn)為第一象限的交點(diǎn),則由橢圓的定義可得,由雙曲線的定義可得,所以,因此,即,所以,即,令因此,其中,所以當(dāng)時(shí),有最大值,最大值為,故選:B.【點(diǎn)睛】一、橢圓的離心率是橢圓最重要的幾何性質(zhì),求橢圓的離心率(或離心率的取值范圍),常見有兩種方法:①求出a,c,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于a,b,c的齊次式,結(jié)合b2=a2-c2轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉(zhuǎn)化為關(guān)于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)二、雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出a,c,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于a,b,c的齊次式,結(jié)合b2=c2-a2轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉(zhuǎn)化為關(guān)于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)2、D【解析】由題設(shè)條件求出,從而可求.【詳解】設(shè)公差為,因?yàn)?,,故,解得,故,故選:D.3、D【解析】利用兩角和的正切公式計(jì)算出正確答案.【詳解】.故選:D4、D【解析】由題意,圓心到直線的距離,∴,∵直線∴直線的傾斜角為,∵過分別作的垂線與軸交于兩點(diǎn),∴,故選D.5、C【解析】分別求得的真假性,從而確定正確答案.【詳解】對于,由于,所以為假命題,為真命題.對于,在三角形中,,由正弦定理得,所以為真命題,為假命題.所以為真命題,、、為假命題.故選:C6、A【解析】由直線點(diǎn)斜式計(jì)算出直線方程.【詳解】因?yàn)橹本€過點(diǎn),且斜率為2,所以該直線方程為,即.故選【點(diǎn)睛】本題考查了求直線方程,由題意已知點(diǎn)坐標(biāo)和斜率,故選用點(diǎn)斜式即可求出答案,較為簡單.7、C【解析】利用拋物線的定義求解.【詳解】如圖所示:焦點(diǎn)為,設(shè)光線第一次交拋物線于點(diǎn),第二次交拋物線于點(diǎn),過焦點(diǎn)F,準(zhǔn)線方程為:,作垂直于準(zhǔn)線于點(diǎn),作垂直于準(zhǔn)線于點(diǎn),則,,,,故選:C8、B【解析】根據(jù)四種命題的結(jié)構(gòu)特征可判斷(?。áぃ┑恼`,根據(jù)全稱命題的否定形式可判斷(ⅱ)的正誤,根據(jù)判別式的正誤可判斷(ⅲ)的正誤.【詳解】命題“若,則”的否命題”為“若,則”,故(?。╁e(cuò)誤.“,”的否定為“,使得”,故(ⅱ)正確,當(dāng)時(shí),,故有實(shí)根,故(ⅲ)正確,“若,則”的否命題為“若,則”,取,則,故命題若,則為假命題,故(ⅳ)錯(cuò)誤.故選:B9、A【解析】確定對應(yīng)二次方程的解,根據(jù)三個(gè)二次的關(guān)系寫出不等式的解集【詳解】,即為,故選:A10、C【解析】結(jié)合已知條件寫出曲線的解析式,進(jìn)而作出圖像,對于①,通過圖像可知,所求面積為四個(gè)半圓和一個(gè)正方形面積之和,結(jié)合數(shù)據(jù)求解即可;對于②,根據(jù)圖像求出曲線上的任意兩點(diǎn)間的距離的最大值即可判斷;對于③,將問題轉(zhuǎn)化為點(diǎn)到直線的距離,然后利用圓上一點(diǎn)到直線的距離的最小值為圓心到直線的距離減去半徑即可求解.【詳解】當(dāng)且時(shí),曲線的方程可化為:;當(dāng)且時(shí),曲線的方程可化為:;當(dāng)且時(shí),曲線的方程可化為:;當(dāng)且時(shí),曲線的方程可化為:,曲線的圖像如下圖所示:由上圖可知,曲線所圍成的面積為四個(gè)半圓的面積與邊長為的正方形的面積之和,從而曲線所圍成的面積,故①正確;由曲線的圖像可知,曲線上的任意兩點(diǎn)間的距離的最大值為兩個(gè)半徑與正方形的邊長之和,即,故②錯(cuò)誤;因?yàn)榈街本€的距離為,所以,當(dāng)最小時(shí),易知在曲線的第一象限內(nèi)的圖像上,因?yàn)榍€的第一象限內(nèi)的圖像是圓心為,半徑為的半圓,所以圓心到的距離,從而,即,故③正確,故選:C.11、A【解析】根據(jù)已知條件可得出關(guān)于、的方程組,解出這兩個(gè)量的值,即可求得結(jié)果.【詳解】由題意有,得,又由,得,解得,,有故選:A.12、B【解析】可得過點(diǎn)P的最長弦長為直徑,最短弦長為過點(diǎn)P的與垂直的弦,分別求出即可得出公差.【詳解】可得過點(diǎn)P的最長弦長為直徑,,最短弦長為過點(diǎn)P的與垂直的弦,,公差.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】將點(diǎn)M的軌跡轉(zhuǎn)化為以AC為直徑的圓,再確定圓心及半徑即可求解,將的最小值轉(zhuǎn)化為點(diǎn)到圓心的距離再減去半徑可求解.【詳解】依題意得,,因?yàn)镸為AB中點(diǎn),所以,所以點(diǎn)M的軌跡是以AC為直徑的圓,又AC中點(diǎn)為,,所以點(diǎn)M的軌跡方程為,圓心,設(shè)關(guān)于直線的對稱點(diǎn)為,則有,解得,所以,所以由對稱性可知的最小值為故答案為:,14、(-1,0]【解析】將題意的命題轉(zhuǎn)化條件為“,”為真命題,結(jié)合一元二次不等式恒成立即可得解.【詳解】因?yàn)槊}“,使得”是假命題,所以其否定“,”為真命題,即在R上恒成立.當(dāng)時(shí),不等式為,符合題意;當(dāng)時(shí),則需滿足,解得;綜上,實(shí)數(shù)的取值范圍為.故答案為:.15、【解析】根據(jù)題中給出的圖形,結(jié)合題意找到各層球的數(shù)列與層數(shù)的關(guān)系,得到,即可得解【詳解】解:由題意可知,,,,,,故,所以,故答案為:16、【解析】先求出導(dǎo)函數(shù),進(jìn)而根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,然后求出切線方程.【詳解】由題意,,,則切線方程為:.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);;(2).【解析】(1)由題可得,進(jìn)而可得,然后可得,即得;(2)由題可求,,再利用點(diǎn)斜式即得.【小問1詳解】∵,∴,,∴,,∴.【小問2詳解】∵,,∴,,∴在點(diǎn)處的切線方程為,即.18、(1)(2)【解析】根據(jù),,成等比數(shù)列,橢圓上的點(diǎn)到焦點(diǎn)的距離的最大值為.列出關(guān)于、、的方程組,求出、的值,即可得出橢圓的方程;對直線和分兩種情況討論:一種是兩條直線與坐標(biāo)軸垂直,可求出兩條弦長度之和;二是當(dāng)兩條直線斜率都存在時(shí),設(shè)直線的方程為,將直線方程與橢圓方程聯(lián)立,列出韋達(dá)定理,利用弦長公式可計(jì)算出的長度的表達(dá)式,然后利用相應(yīng)的代換可求出的長度表達(dá)式,將兩線段長度表達(dá)式相加,利用函數(shù)思想可求出兩條弦長的取值范圍最后將兩種情況的取值范圍進(jìn)行合并即可得出答案【詳解】易知,得,則,而,又,得,,因此,橢圓C的標(biāo)準(zhǔn)方程為;當(dāng)兩條直線中有一條斜率為0時(shí),另一條直線的斜率不存在,由題意易得;當(dāng)兩條直線斜率都存在且不為0時(shí),由知,設(shè)、,直線MN的方程為,則直線PQ的方程為,將直線方程代入橢圓方程并整理得:,顯然,,,,同理得,所以,,令,則,,設(shè),,所以,,所以,,則綜合可知,的取值范圍是【點(diǎn)睛】本題主要考查待定系數(shù)法求橢圓方程及圓錐曲線求范圍,屬于難題.解決圓錐曲線中的范圍問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將圓錐曲線中范圍問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法求解.19、(1);(2)證明見解析;(3)不存在,理由見解析.【解析】(1)由橢圓所過點(diǎn)及離心率,列方程組,再求解即得;(2)設(shè)出點(diǎn)A,B坐標(biāo)并列出它們滿足的關(guān)系,利用點(diǎn)差法即可作答;(3)設(shè)直線的方程,聯(lián)立直線與橢圓的方程,借助韋達(dá)定理求得,,再結(jié)合為等邊三角形的條件即可作答.【詳解】(1)顯然,半焦距c有,即,則,所以橢圓的標(biāo)準(zhǔn)方程為;(2)設(shè),,,,由(1)知,,兩式相減得,即,而弦的中點(diǎn),則有,所以;(3)假定存在符合要求的點(diǎn)P,由(1)知,設(shè)直線的方程為,由得:,則,,于是得,從而得點(diǎn),,因?yàn)榈冗吶切?,即有,,因此,,,從而得,整理得,無解,所以在y軸上不存在點(diǎn),使得為等邊三角形.20、(1),定義域?yàn)?;?)當(dāng)時(shí),包裝盒的容積最大是.【解析】(1)設(shè)出包裝盒的高和底面邊長,利用長方體的表面積得到等量關(guān)系,再利用長方體的體積公式求出表達(dá)式,再利用實(shí)際意義得到函數(shù)的定義域;(2)求導(dǎo),利用導(dǎo)函數(shù)的符號(hào)變化得到函數(shù)的極值,即最值.小問1詳解】解:設(shè)包裝盒的高為,底面邊長為,則,,所以=其定義域?yàn)椋弧拘?詳解】解:由(1)得:,,因?yàn)?,所以?dāng)時(shí),;當(dāng)時(shí),;所以當(dāng)時(shí),取得極大值,即當(dāng)時(shí),包裝盒的容積最大是21、(1)(2)過定點(diǎn),【解析】(1)根據(jù)橢圓上的點(diǎn)及離心率求出a,b即可;(2)設(shè)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論