云南省西疇縣第二中學(xué)2024屆高二上數(shù)學(xué)期末預(yù)測試題含解析_第1頁
云南省西疇縣第二中學(xué)2024屆高二上數(shù)學(xué)期末預(yù)測試題含解析_第2頁
云南省西疇縣第二中學(xué)2024屆高二上數(shù)學(xué)期末預(yù)測試題含解析_第3頁
云南省西疇縣第二中學(xué)2024屆高二上數(shù)學(xué)期末預(yù)測試題含解析_第4頁
云南省西疇縣第二中學(xué)2024屆高二上數(shù)學(xué)期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

云南省西疇縣第二中學(xué)2024屆高二上數(shù)學(xué)期末預(yù)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.七巧板是中國古代勞動人民發(fā)明的一種傳統(tǒng)智力玩具,它由五塊等腰直角三角形、一塊正方形和一塊平行四邊形共七塊板組成如圖是一個用七巧板拼成的正方形,若在此正方形中任取一點,則此點取自陰影部分的概率為()A. B.C. D.2.函數(shù)在的圖象大致為()A. B.C D.3.已知數(shù)列通項公式,則()A.6 B.13C.21 D.314.已知向量,,且與互相垂直,則()A. B.C. D.5.南宋數(shù)學(xué)家楊輝在《詳解九章算法》中討論過高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,而是逐項差數(shù)之差或者高次差相等.例如“百層球堆垛”:第一層有1個球,第二層有3個球,第三層有6個球,第四層有10個球,第五層有15個球,…,各層球數(shù)之差:,,,,…即2,3,4,5,…是等差數(shù)列.現(xiàn)有一個高階等差數(shù)列,其前6項分別為1,3,6,12,23,41,則該數(shù)列的第8項為()A.51 B.68C.106 D.1576.金剛石的成分為純碳,是自然界中天然存在的最堅硬物質(zhì),它的結(jié)構(gòu)是由8個等邊三角形組成的正八面體.若某金剛石的棱長為2,則它的體積為()A. B.C. D.7.直線與橢圓交于兩點,以線段為直徑的圓恰好經(jīng)過橢圓的左焦點,則此橢圓的離心率為()A B.C. D.8.已知x,y是實數(shù),且,則的最大值是()A. B.C. D.9.已知a,b是互不重合直線,,是互不重合的平面,下列命題正確的是()A.若,,則B.若,,,則C.若,,則D.若,,,則10.設(shè)是兩個不同的平面,是一條直線,以下命題正確的是A.若,則 B.若,則C.若,則 D.若,則11.在拋物線上,橫坐標為4的點到焦點的距離為5,則p的值為()A. B.2C.1 D.412.某市統(tǒng)計局網(wǎng)站公布了2017年至2020年該市政府部門網(wǎng)站的每年的兩項訪問量,數(shù)據(jù)如下:年度項目2017年2018年2019年2020年獨立用戶訪問總量(單位:個)2512573924400060989網(wǎng)站總訪問量(單位:次)23435370348194783219288下列表述中錯誤的是()A.2017年至2018年,兩項訪問量都增長幅度較大;B.2018年至2019年,兩項訪問量都有所回落;C.2019年至2020年,兩項訪問量都又有所增長;D.從數(shù)據(jù)可以看出,該市政府部門網(wǎng)站的兩項訪問量都呈逐年增長態(tài)勢二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線的左、右焦點為,,直線與雙曲線交于兩點,且,為坐標原點,又,則該雙曲線的離心率為__________.14.阿波羅尼斯與阿基米德、歐幾里得被稱為亞歷山大時期的數(shù)學(xué)三巨匠.“阿波羅尼斯圓”是他的代表成果之一:平面上動點P到兩定點A,B的距離之比滿足(且,t為常數(shù)),則點的軌跡為圓.已知在平面直角坐標系中,,,動點P滿足,則P點的軌跡為圓,該圓方程為_________;過點的直線交圓于兩點,且,則_________15.在中,,是線段上的點,,若的面積為,當取到最大值時,___________.16.過點作圓的切線,則切線方程為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在正方體中,E,F(xiàn)分別是,的中點(1)求證:∥平面;(2)求平面與平面EDC所成的二面角的正弦值18.(12分)如圖,在多面體中,平面平面.四邊形為正方形,四邊形為梯形,且,,,(1)求證:;(2)求直線與平面所成角的正弦值;(3)線段上是否存在點,使得直線平面?若存在,求的值;若不存在,請說明理由19.(12分)已知橢圓的方程為,雙曲線的左、右焦點分別是的左、右頂點,而的左、右頂點分別是的左、右焦點(1)求雙曲線的方程;(2)若直線與雙曲線恒有兩個不同的交點和,且(其中為原點),求的取值范圍20.(12分)已知函數(shù)(1)討論的單調(diào)區(qū)間;(2)求在上的最大值.21.(12分)設(shè)數(shù)列的前項和為,已知,且.(1)證明:數(shù)列為等比數(shù)列;(2)若,是否存在正整數(shù),使得對任意恒成立?若存在、求的值;若不存在,說明理由.22.(10分)如圖,正方體的棱長為,分別是的中點,點在棱上,().(Ⅰ)三棱錐的體積分別為,當為何值時,最大?最大值為多少?(Ⅱ)若平面,證明:平面平面.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】設(shè)正方形的邊長為,計算出陰影部分區(qū)域的面積和正方形區(qū)域的面積,然后利用幾何概型的概率公式計算出所求事件的概率.【詳解】設(shè)大正方形的邊長為,則面積為,陰影部分由一個大等腰直角三角形和一個梯形組成大等腰直角三角形的面積為,梯形的上底為,下底為,高為,面積為,故所求概率故選:D.2、D【解析】函數(shù)|在[–2,2]上是偶函數(shù),其圖象關(guān)于軸對稱,因為,所以排除選項;當時,有一零點,設(shè)為,當時,為減函數(shù),當時,為增函數(shù)故選:D.3、C【解析】令即得解.【詳解】解:令得.故選:C4、D【解析】根據(jù)垂直關(guān)系可得,由向量坐標運算可構(gòu)造方程求得結(jié)果.【詳解】,,又與互相垂直,,解得:.故選:D.5、C【解析】對高階等差數(shù)列按其定義逐一進行構(gòu)造數(shù)列,直到出現(xiàn)一般等差數(shù)列為止,再根據(jù)其遞推關(guān)系進行求解.【詳解】現(xiàn)有一個高階等差數(shù)列,其前6項分別為1,3,6,12,23,41,各項與前一項之差:,,,,,…即2,3,6,11,18,…,,,,,…即1,3,5,7,…是等差數(shù)列,所以,故選:C6、C【解析】由幾何關(guān)系先求出一個正四面體的高,再結(jié)合錐體體積公式即可求解正八面體的體積.【詳解】如圖,設(shè)底面中心為,連接,由幾何關(guān)系知,,則正八面體體積為.故選:C7、D【解析】根據(jù)題意作出示意圖,根據(jù)圓的性質(zhì)以及直線的傾斜角求解出的長度,再根據(jù)橢圓的定義求解出的關(guān)系,則橢圓離心率可求.【詳解】設(shè)橢圓的左右焦點分別為,如下圖:因為以線段為直徑的圓恰好經(jīng)過橢圓的左焦點,所以且,所以,又因為的傾斜角為,所以,所以為等邊三角形,所以,所以,因為,所以,所以,所以,所以,故選:D.8、D【解析】將方程化為圓的標準方程,則的幾何意義是圓上一點與點連線的斜率,進而根據(jù)直線與圓相切求得答案.【詳解】方程可化為,表示以為圓心,為半徑的圓,的幾何意義是圓上一點與點A連線的斜率,設(shè),即,當此直線與圓相切時,斜率最大或最小,當切線位于切線AB時斜率最大.此時,,,所以的最大值為.故選:D9、B【解析】根據(jù)線線,線面,面面位置關(guān)系的判定方法即可逐項判斷.【詳解】A:若,,則或a,故A錯誤;B:若,,則a⊥β,又,則a⊥b,故B正確;C:若,,則或α與β相交,故C錯誤;D:若,,,則不能判斷α與β是否垂直,故D錯誤.故選:B.10、C【解析】對于A、B、D均可能出現(xiàn),而對于C是正確的11、B【解析】由方程可得拋物線的焦點和準線,進而由拋物線的定義可得,解之可得值【詳解】解:由題意可得拋物線開口向右,焦點坐標,,準線方程,由拋物線的定義可得拋物線上橫坐標為4的點到準線的距離等于5,即,解之可得.故選:B.12、D【解析】根據(jù)表格數(shù)據(jù),結(jié)合各選項的描述判斷正誤即可.【詳解】A:2017年至2018年,兩項訪問量分別增長、,顯然增長幅度相較于后兩年是最大的,正確;B:2018年至2019年,兩項訪問量相較于2017年至2018年都有回落,正確;C:2019年至2020年,兩項訪問量分別增長、,正確;D:由B分析知,該市政府部門網(wǎng)站的兩項訪問量在2018年至2019年有回落,而不是逐年增長態(tài)勢,錯誤.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)直線和雙曲線的對稱性,結(jié)合圓的性質(zhì)、雙曲線的定義、三角形面積公式、雙曲線離心率公式進行求解即可.【詳解】由直線與雙曲線的對稱性可知,點與點關(guān)于原點對稱,在三角形中,,所以,是以為直徑的圓與雙曲線的交點,不妨設(shè)在第一象限,,因為圓是以為直徑,所以圓的半徑為,因為點在圓上,也在雙曲線上,所以有,聯(lián)立化簡可得,整理得,,所以,由所以,又因為,聯(lián)立可得,,因為為圓的直徑,所以,即,,所以離心率.故答案為:【點睛】關(guān)鍵點睛:利用直線和雙曲線的對稱性,結(jié)合圓的性質(zhì)進行求解是解題的關(guān)鍵.14、①.②.【解析】設(shè),根據(jù)可得圓的方程,利用垂徑定理可求.【詳解】設(shè),則,整理得到,即.因為,故為的中點,過圓心作的垂線,垂足為,則為的中點,則,故,解得,故答案為:,.15、【解析】由三角形面積公式得出,設(shè),由可得出,利用基本不等式可求出的值,利用等號成立可得出、的值,再利用余弦利用可得出的值.【詳解】由題意可得,解得,設(shè),則,可得,由基本不等式可得,當且僅當時,取得最大值,,,由余弦定理得,解得.故答案為【點睛】本題考查余弦定理解三角形,同時也考查了三角形的面積公式以及利用基本不等式求最值,在利用基本不等式求最值時,需要結(jié)合已知條件得出定值條件,同時要注意等號成立的條件,考查分析問題和解決問題的能力,屬于中等題.16、【解析】求出切點與圓心連線的斜率后可得切線方程.【詳解】因為點在圓上,故切線必垂直于切點與圓心連線,而切點與圓心連線的斜率為,故切線的斜率為,故切線方程為:即.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】(1)連接,,連接,證明CE∥即可;(2)建立空間直角坐標系,求出平面與平面EDC的法向量,利用向量法求二面角的正弦值.【小問1詳解】如圖,連接,,連接,∵BC∥且BC=,∴四邊形是平行四邊形,∴∥且,∵E是中點,G是中點,∴∥CG且,∴四邊形是平行四邊形,∴∥CE,∵平面,CE平面,∴CE∥平面;【小問2詳解】如圖建立空間直角坐標系,設(shè)正方體的棱長為2,則,則,設(shè)平面的法向量為,則,取;設(shè)平面EDC的法向量為,則,取,則;設(shè)平面與平面EDC所成的二面角的平面角為α,則,∴18、(1)證明見解析(2)(3)存在點,使得平面,且【解析】(1)由面面垂直的性質(zhì)可得平面,再由線面垂直的性質(zhì)可證得結(jié)論,(2)可證得兩兩垂直,所以分別以為軸,軸,軸建立空間直角坐標系,利用空間向量求解,(3)設(shè),然后利用空間向量求解【小問1詳解】證明:因為為正方形,所以又因為平面平面,且平面平面,所以平面平面所以;【小問2詳解】由(1)可知,平面,所以,因為,所以兩兩垂直分別以為軸,軸,軸建立空間直角坐標系(如圖)因為,,所以,所以,設(shè)平面的一個法向量為,則,即令,則,;所以設(shè)直線與平面所成角為,則直線與平面所成角為的正弦值為;【小問3詳解】設(shè),易知設(shè),則,所以,所以,所以設(shè)平面的一個法向量為,則,因為,所以令,則,所以在線段上存在點,使得平面等價于存在,使得因為,由,所以,解得,所以線段上存在點,使得平面,且19、(1);(2)【解析】(1)求出橢圓的焦點和頂點,即得雙曲線的頂點和焦點,從而易求得標準方程;(2)將代入,得由直線與雙曲線交于不同的兩點,得的取值范圍,設(shè),由韋達定理得則代入可求得的范圍【詳解】(1)設(shè)雙曲線的方程為,則,再由,得故的方程為(2)將代入,得由直線與雙曲線交于不同的兩點,得①設(shè)則又,得,,即,解得②由①②得<k2<1,故的取值范圍【點睛】本題考查雙曲線的標準方程,考查直線與雙曲線相交中的范圍問題.應(yīng)注意:(1)利用圓錐曲線的幾何性質(zhì)或判別式構(gòu)造不等關(guān)系,從而確定參數(shù)的取值范圍(2)利用已知參數(shù)的范圍,求新參數(shù)的范圍,解這類問題的核心是建立兩個參數(shù)之間的等量關(guān)系(3)利用隱含的不等關(guān)系建立不等式,從而求出參數(shù)的取值范圍(4)利用已知的不等關(guān)系構(gòu)造不等式,從而求出參數(shù)的取值范圍(5)利用求函數(shù)的值域的方法將待求量表示為其他變量的函數(shù),求其值域,從而確定參數(shù)的取值范圍20、(1)①,在上單減;②,在上單增,單減;(2).【解析】(1),根據(jù)函數(shù)定義域,分,,討論求解;(2)根據(jù)(1)知:分,,,討論求解.【小問1詳解】解:(1)定義域,①時,成立,所以在上遞減;②時,當時,,當時,,所以在上單增,單減;【小問2詳解】由(1)知:時,在單減,所以;時,在單減,所以;時,在上單增,上遞減,所以;時,在單增,所以;綜上:.21、(1)證明見解析(2)【解析】(1)由已知條件有,根據(jù)等比數(shù)列的定義即可證明;(2)由(1)求出及,進而可得,利用二次函數(shù)的性質(zhì)即可求解的最小值,從而可得答案.【小問1詳解】證明:因為,所以,又因為,所以,所以數(shù)列是首項為2公比為2的等比數(shù)列;【小問2詳解】解:由(1)知,,所以,所以,檢驗時也滿足上式,所以,所以,令,所以,故當即時,取得最小值,所以.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論