


下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
不可靠測(cè)試條件下基于NSGA-Ⅱ的多目標(biāo)測(cè)試優(yōu)化選擇AbstractTestingisacriticalcomponentofsoftwaredevelopment,anditisnecessarytoensurethatsoftwarefunctionsappropriatelyandmeetsuserexpectations.However,theresourcesneededtotestsoftwarearetime-consumingandexpensive,especiallywhenfacingthechallengeofoptimizingtestcasesunderunreliabletestingconditions.Thispaperproposesanapproachformulti-objectivetestoptimizationbasedonNSGA-Ⅱalgorithmunderunreliabletestingconditions.Thisapproachaimstoimprovetheefficiencyoftestingunderuncertainconditionstoobtainreliabletestingresultswithasmallernumberoftestcases.IntroductionTheprimarypurposeoftestingistoensurethatsoftwaremeetsusers’expectationsandhasnodefectsorerrors.However,softwaretestingisoftenexpensiveandrequiressignificantresources,includingtime,labor,andequipment.Inmanycases,testingisperformedunderuncertain,unreliableconditions,complicatingtheprocessevenfurther.Underthesecircumstances,itisnecessarytooptimizethetestcasesandimprovetheefficiencyoftesting.Toachievethisgoal,weproposeamulti-objectivetestoptimizationalgorithmbasedonNSGA-Ⅱunderunreliabletestingconditions.Theproposedapproachintegratestheadvantagesofmulti-objectiveoptimization,suchasParetooptimality,withthecapabilitiesofNSGA-Ⅱalgorithm,whichhasbeenwidelyusedinvariousoptimizationproblemsduetoitsgoodperformance.Theapproachaimstoreducethenumberoftestcases,maintainthedegreeoftestcoverage,andimprovetestingefficiencyunderuncertainconditionstoobtainmorereliabletestingresults.RelatedWorkManyresearchershaveproposedvariousmethodsforsoftwaretestingoptimization.Traditionalmethodsaimtoachievecompletecoverage,butthisoftenrequiresasignificantnumberoftestcases,whichistime-consumingandimpractical.Therefore,researchershavefocusedonreducingthenumberoftestcaseswhilestillmaintainingtestcoverage.Variousoptimizationalgorithmshavebeenproposedtoachievethisgoal,suchasgeneticalgorithms,particleswarmoptimizationalgorithms,andsimulatedannealingalgorithms.However,thesealgorithmsoftenhavelimitations,suchaspotentialprematureconvergenceorpoorperformanceinsolvinghigh-dimensionalproblems.NSGA-Ⅱalgorithmhasbecomeapopularalternativeforoptimizationproblemsduetoitshighefficiency,betterpopulationdiversity,andmulti-objectiveoptimizationcapabilities.Ithasalsobeenwidelyappliedinmanyfieldsandhasachievedsignificantresults.ProposedapproachTheproposedmulti-objectivetestoptimizationalgorithmbasedonNSGA-Ⅱconsistsofthefollowingsteps:1.Initializethepopulation:Thealgorithmstartsbycreatinganinitialpopulationoftestcasestobeoptimized.2.Generateanewpopulation:Next,anewpopulationisgeneratedfromtheinitialpopulationbasedontheNSGA-Ⅱalgorithm,whichincludesselection,crossover,andmutationoperations.3.Evaluatethefitnessofeachtestcase:Thenewpopulationoftestcasesisevaluatedtocalculatetheirfitnessvalueusingasetoffitnessfunctions.Inthiscase,fitnessfunctionsincludetestcoverage,executiontime,andfaultdetectionrate.4.Non-dominatedsortingandselection:TheNSGA-Ⅱalgorithmsortstestcasesintoseveralnon-dominatedfrontsbasedontheirfitnessvalueanddiversity.Thebesttestcaseisselectedfromthenon-dominatedfront.5.Terminationcriterion:Thealgorithmterminateswhentheterminationconditionismet,andtheselectedtestcasesareconsideredastheoptimaltestcases.ResultsandEvaluationTheproposedapproachwastestedondifferentsoftwareapplications,andtheresultsshowthatitcaneffectivelyoptimizetestcases,reducethenumberoftestcases,maintaintestcoverage,andimprovetestingefficiencyunderunreliabletestingconditions.Italsoperformsbetterthantraditionaltestingoptimizationalgorithms,suchasparticleswarmoptimizationalgorithmandgeneticalgorithm.ConclusionThispaperproposesanapproachformulti-objectivetestoptimizationbasedonNSGA-Ⅱalgorithmunderuncertaintestingconditions.Theapproachaimstoreducethenumberoftestcases,maintaintestcoverage,andimprovetestingefficiencytoobtainmorereliabletestingresults.Resultsshowtha
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 銀行解除借款合同
- 《蘇武傳》教學(xué)設(shè)計(jì) 2024-2025學(xué)年統(tǒng)編版高中語(yǔ)文選擇性必修中冊(cè)
- Unit 1 How can I get there?PartA(教學(xué)設(shè)計(jì))-2024-2025學(xué)年人教PEP版英語(yǔ)六年級(jí)上冊(cè)
- 山東醫(yī)學(xué)高等專科學(xué)校《物理化學(xué)B(下)》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東華宇工學(xué)院《土木工程材料》2023-2024學(xué)年第二學(xué)期期末試卷
- 山西藥科職業(yè)學(xué)院《財(cái)務(wù)大數(shù)據(jù)決策》2023-2024學(xué)年第二學(xué)期期末試卷
- 內(nèi)蒙古電子信息職業(yè)技術(shù)學(xué)院《有色冶金設(shè)備》2023-2024學(xué)年第二學(xué)期期末試卷
- 曲阜師范大學(xué)《水墨語(yǔ)言探索》2023-2024學(xué)年第二學(xué)期期末試卷
- 襄陽(yáng)科技職業(yè)學(xué)院《材料科學(xué)基礎(chǔ)(下)》2023-2024學(xué)年第二學(xué)期期末試卷
- 25王戎不取道旁李 教學(xué)設(shè)計(jì)-2024-2025學(xué)年語(yǔ)文四年級(jí)上冊(cè)統(tǒng)編版
- 哈弗汽車(chē)品牌全案策略及營(yíng)銷推廣方案
- 04J008 擋土墻(重力式 衡重式 懸臂式)
- 《哈佛經(jīng)典談判術(shù)》讀書(shū)筆記思維導(dǎo)圖
- 質(zhì)量管理小組活動(dòng)準(zhǔn)則TCAQ10201-2020
- 扶梯人行道檢驗(yàn)驗(yàn)收作業(yè)指導(dǎo)書(shū)
- GB/T 41855-2022小型游樂(lè)設(shè)施轉(zhuǎn)椅
- 2023年蘇州衛(wèi)生職業(yè)技術(shù)學(xué)院高職單招(英語(yǔ))試題庫(kù)含答案解析
- GB/T 20308-2020產(chǎn)品幾何技術(shù)規(guī)范(GPS)矩陣模型
- 男孩女孩動(dòng)起來(lái)健康運(yùn)動(dòng)知識(shí)PPT模板
- 體育原理課件
- 鐵路道岔知識(shí)課件
評(píng)論
0/150
提交評(píng)論