合肥第45中七年級下冊數(shù)學(xué)期末試卷綜合測試(Word版-含答案)_第1頁
合肥第45中七年級下冊數(shù)學(xué)期末試卷綜合測試(Word版-含答案)_第2頁
合肥第45中七年級下冊數(shù)學(xué)期末試卷綜合測試(Word版-含答案)_第3頁
合肥第45中七年級下冊數(shù)學(xué)期末試卷綜合測試(Word版-含答案)_第4頁
合肥第45中七年級下冊數(shù)學(xué)期末試卷綜合測試(Word版-含答案)_第5頁
已閱讀5頁,還剩25頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

合肥第45中七年級下冊數(shù)學(xué)期末試卷綜合測試(Word版含答案)一、解答題1.如圖1,已AB∥CD,∠C=∠A.(1)求證:AD∥BC;(2)如圖2,若點(diǎn)E是在平行線AB,CD內(nèi),AD右側(cè)的任意一點(diǎn),探究∠BAE,∠CDE,∠E之間的數(shù)量關(guān)系,并證明.(3)如圖3,若∠C=90°,且點(diǎn)E在線段BC上,DF平分∠EDC,射線DF在∠EDC的內(nèi)部,且交BC于點(diǎn)M,交AE延長線于點(diǎn)F,∠AED+∠AEC=180°,①直接寫出∠AED與∠FDC的數(shù)量關(guān)系:.②點(diǎn)P在射線DA上,且滿足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,補(bǔ)全圖形后,求∠EPD的度數(shù)2.如圖1,點(diǎn)在直線上,點(diǎn)在直線上,點(diǎn)在,之間,且滿足.(1)證明:;(2)如圖2,若,,點(diǎn)在線段上,連接,且,試判斷與的數(shù)量關(guān)系,并說明理由;(3)如圖3,若(為大于等于的整數(shù)),點(diǎn)在線段上,連接,若,則______.3.如圖,∠EBF=50°,點(diǎn)C是∠EBF的邊BF上一點(diǎn).動點(diǎn)A從點(diǎn)B出發(fā)在∠EBF的邊BE上,沿BE方向運(yùn)動,在動點(diǎn)A運(yùn)動的過程中,始終有過點(diǎn)A的射線AD∥BC.(1)在動點(diǎn)A運(yùn)動的過程中,(填“是”或“否”)存在某一時刻,使得AD平分∠EAC?(2)假設(shè)存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之間有何數(shù)量關(guān)系?并請說明理由;(3)當(dāng)AC⊥BC時,直接寫出∠BAC的度數(shù)和此時AD與AC之間的位置關(guān)系.4.點(diǎn)A,C,E在直線l上,點(diǎn)B不在直線l上,把線段AB沿直線l向右平移得到線段CD.(1)如圖1,若點(diǎn)E在線段AC上,求證:B+D=BED;(2)若點(diǎn)E不在線段AC上,試猜想并證明B,D,BED之間的等量關(guān)系;(3)在(1)的條件下,如圖2所示,過點(diǎn)B作PB//ED,在直線BP,ED之間有點(diǎn)M,使得ABE=EBM,CDE=EDM,同時點(diǎn)F使得ABE=nEBF,CDE=nEDF,其中n≥1,設(shè)BMD=m,利用(1)中的結(jié)論求BFD的度數(shù)(用含m,n的代數(shù)式表示).5.如圖,已知直線射線,.是射線上一動點(diǎn),過點(diǎn)作交射線于點(diǎn),連接.作,交直線于點(diǎn),平分.(1)若點(diǎn),,都在點(diǎn)的右側(cè).①求的度數(shù);②若,求的度數(shù).(不能使用“三角形的內(nèi)角和是”直接解題)(2)在點(diǎn)的運(yùn)動過程中,是否存在這樣的偕形,使?若存在,直接寫出的度數(shù);若不存在.請說明理由.二、解答題6.已知:三角形ABC和三角形DEF位于直線MN的兩側(cè)中,直線MN經(jīng)過點(diǎn)C,且,其中,,,點(diǎn)E、F均落在直線MN上.(1)如圖1,當(dāng)點(diǎn)C與點(diǎn)E重合時,求證:;聰明的小麗過點(diǎn)C作,并利用這條輔助線解決了問題.請你根據(jù)小麗的思考,寫出解決這一問題的過程.(2)將三角形DEF沿著NM的方向平移,如圖2,求證:;(3)將三角形DEF沿著NM的方向平移,使得點(diǎn)E移動到點(diǎn),畫出平移后的三角形DEF,并回答問題,若,則________.(用含的代數(shù)式表示)7.如圖1所示:點(diǎn)E為BC上一點(diǎn),∠A=∠D,AB∥CD(1)直接寫出∠ACB與∠BED的數(shù)量關(guān)系;(2)如圖2,AB∥CD,BG平分∠ABE,BG的反向延長線與∠EDF的平分線交于H點(diǎn),若∠DEB比∠GHD大60°,求∠DEB的度數(shù);(3)保持(2)中所求的∠DEB的度數(shù)不變,如圖3,BM平分∠EBK,DN平分∠CDE,作BP∥DN,則∠PBM的度數(shù)是否改變?若不發(fā)生變化,請求它的度數(shù),若發(fā)生改變,請說明理由.(本題中的角均為大于0°且小于180°的角).8.如圖,,平分,設(shè)為,點(diǎn)E是射線上的一個動點(diǎn).(1)若時,且,求的度數(shù);(2)若點(diǎn)E運(yùn)動到上方,且滿足,,求的值;(3)若,求的度數(shù)(用含n和的代數(shù)式表示).9.已知:和同一平面內(nèi)的點(diǎn).(1)如圖1,點(diǎn)在邊上,過作交于,交于.根據(jù)題意,在圖1中補(bǔ)全圖形,請寫出與的數(shù)量關(guān)系,并說明理由;(2)如圖2,點(diǎn)在的延長線上,,.請判斷與的位置關(guān)系,并說明理由.(3)如圖3,點(diǎn)是外部的一個動點(diǎn).過作交直線于,交直線于,直接寫出與的數(shù)量關(guān)系,并在圖3中補(bǔ)全圖形.10.綜合與探究綜合與實踐課上,同學(xué)們以“一個含角的直角三角尺和兩條平行線”為背景開展數(shù)學(xué)活動,如圖,已知兩直線,,且,三角形是直角三角形,,,操作發(fā)現(xiàn):(1)如圖1.,求的度數(shù);(2)如圖2.創(chuàng)新小組的同學(xué)把直線向上平移,并把的位置改變,發(fā)現(xiàn),請說明理由.實踐探究:(3)填密小組在創(chuàng)新小組發(fā)現(xiàn)的結(jié)論的基礎(chǔ)上,將圖2中的圖形繼續(xù)變化得到圖3,平分,此時發(fā)現(xiàn)與又存在新的數(shù)量關(guān)系,請寫出與的數(shù)量關(guān)系并說明理由.三、解答題11.(1)如圖1,∠BAD的平分線AE與∠BCD的平分線CE交于點(diǎn)E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度數(shù);(2)如圖2,∠BAD的平分線AE與∠BCD的平分線CE交于點(diǎn)E,∠ADC=α°,∠ABC=β°,求∠AEC的度數(shù);(3)如圖3,PQ⊥MN于點(diǎn)O,點(diǎn)A是平面內(nèi)一點(diǎn),AB、AC交MN于B、C兩點(diǎn),AD平分∠BAC交PQ于點(diǎn)D,請問的值是否發(fā)生變化?若不變,求出其值;若改變,請說明理由.12.閱讀下列材料并解答問題:在一個三角形中,如果一個內(nèi)角的度數(shù)是另一個內(nèi)角度數(shù)的3倍,那么這樣的三角形我們稱為“夢想三角形”例如:一個三角形三個內(nèi)角的度數(shù)分別是120°,40°,20°,這個三角形就是一個“夢想三角形”.反之,若一個三角形是“夢想三角形”,那么這個三角形的三個內(nèi)角中一定有一個內(nèi)角的度數(shù)是另一個內(nèi)角度數(shù)的3倍.(1)如果一個“夢想三角形”有一個角為108°,那么這個“夢想三角形”的最小內(nèi)角的度數(shù)為__________(2)如圖1,已知∠MON=60°,在射線OM上取一點(diǎn)A,過點(diǎn)A作AB⊥OM交ON于點(diǎn)B,以A為端點(diǎn)作射線AD,交線段OB于點(diǎn)C(點(diǎn)C不與O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“夢想三角形”,為什么?(3)如圖2,點(diǎn)D在△ABC的邊上,連接DC,作∠ADC的平分線交AC于點(diǎn)E,在DC上取一點(diǎn)F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“夢想三角形”,求∠B的度數(shù).13.如圖①,平分,⊥,∠B=450,∠C=730.(1)求的度數(shù);(2)如圖②,若把“⊥”變成“點(diǎn)F在DA的延長線上,”,其它條件不變,求的度數(shù);(3)如圖③,若把“⊥”變成“平分”,其它條件不變,的大小是否變化,并請說明理由.14.模型與應(yīng)用.(模型)(1)如圖①,已知AB∥CD,求證∠1+∠MEN+∠2=360°.(應(yīng)用)(2)如圖②,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6的度數(shù)為.如圖③,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度數(shù)為.(3)如圖④,已知AB∥CD,∠AM1M2的角平分線M1O與∠CMnMn-1的角平分線MnO交于點(diǎn)O,若∠M1OMn=m°.在(2)的基礎(chǔ)上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度數(shù).(用含m、n的代數(shù)式表示)15.如圖,平分,平分,請判斷與的位置關(guān)系并說明理由;如圖,當(dāng)且與的位置關(guān)系保持不變,移動直角頂點(diǎn),使,當(dāng)直角頂點(diǎn)點(diǎn)移動時,問與否存在確定的數(shù)量關(guān)系?并說明理由.如圖,為線段上一定點(diǎn),點(diǎn)為直線上一動點(diǎn)且與的位置關(guān)系保持不變,①當(dāng)點(diǎn)在射線上運(yùn)動時(點(diǎn)除外),與有何數(shù)量關(guān)系?猜想結(jié)論并說明理由.②當(dāng)點(diǎn)在射線的反向延長線上運(yùn)動時(點(diǎn)除外),與有何數(shù)量關(guān)系?直接寫出猜想結(jié)論,不需說明理由.【參考答案】一、解答題1.(1)見解析;(2)∠BAE+∠CDE=∠AED,證明見解析;(3)①∠AED-∠FDC=45°,理由見解析;②50°【分析】(1)根據(jù)平行線的性質(zhì)及判定可得結(jié)論;(2)過點(diǎn)E作EF∥AB,根解析:(1)見解析;(2)∠BAE+∠CDE=∠AED,證明見解析;(3)①∠AED-∠FDC=45°,理由見解析;②50°【分析】(1)根據(jù)平行線的性質(zhì)及判定可得結(jié)論;(2)過點(diǎn)E作EF∥AB,根據(jù)平行線的性質(zhì)得AB∥CD∥EF,然后由兩直線平行內(nèi)錯角相等可得結(jié)論;(3)①根據(jù)∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可導(dǎo)出角的關(guān)系;②先根據(jù)∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根據(jù)∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度數(shù).【詳解】解:(1)證明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如圖2,過點(diǎn)E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案為:∠AED-∠FDC=45°;②如圖3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=∠DEB=∠DEA,∴∠PEA=∠AED,∴∠DEP=∠PEA+∠AED=∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【點(diǎn)睛】本題主要考查平行線的判定和性質(zhì),熟練掌握平行線的判定和性質(zhì),角平分線的性質(zhì)等知識點(diǎn)是解題的關(guān)鍵.2.(1)見解析;(2)見解析;(3)n-1【分析】(1)連接AB,根據(jù)已知證明∠MAB+∠SBA=180°,即可得證;(2)作CF∥ST,設(shè)∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根據(jù)解析:(1)見解析;(2)見解析;(3)n-1【分析】(1)連接AB,根據(jù)已知證明∠MAB+∠SBA=180°,即可得證;(2)作CF∥ST,設(shè)∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根據(jù)AD∥BC,得到∠DAC=120°,求出∠CAE即可得到結(jié)論;(3)作CF∥ST,設(shè)∠CBT=β,得到∠CBT=∠BCF=β,分別表示出∠CAN和∠CAE,即可得到比值.【詳解】解:(1)如圖,連接,,,,,(2),理由:作,則如圖,設(shè),則.,,,,.即.(3)作,則如圖,設(shè),則.,,,,,故答案為.【點(diǎn)睛】本題主要考查平行線的性質(zhì)和判定,解題關(guān)鍵是角度的靈活轉(zhuǎn)換,構(gòu)建數(shù)量關(guān)系式.3.(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD解析:(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當(dāng)∠ACB=∠B時,有AD平分∠EAC;(2)根據(jù)角平分線可得∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,則可求∠BAC=40°,由平行線的性質(zhì)可得AC⊥AD.【詳解】解:(1)是,理由如下:要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當(dāng)∠ACB=∠B時,有AD平分∠EAC;故答案為:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【點(diǎn)睛】此題考查了角平分線和平行線的性質(zhì),熟練掌握角平分線和平行線的有關(guān)性質(zhì)是解題的關(guān)鍵.4.(1)見解析;(2)當(dāng)點(diǎn)E在CA的延長線上時,∠BED=∠D-∠B;當(dāng)點(diǎn)E在AC的延長線上時,∠BED=∠BET-∠DET=∠B-∠D;(3)【分析】(1)如圖1中,過點(diǎn)E作ET∥AB.利用平行解析:(1)見解析;(2)當(dāng)點(diǎn)E在CA的延長線上時,∠BED=∠D-∠B;當(dāng)點(diǎn)E在AC的延長線上時,∠BED=∠BET-∠DET=∠B-∠D;(3)【分析】(1)如圖1中,過點(diǎn)E作ET∥AB.利用平行線的性質(zhì)解決問題.(2)分兩種情形:如圖2-1中,當(dāng)點(diǎn)E在CA的延長線上時,如圖2-2中,當(dāng)點(diǎn)E在AC的延長線上時,構(gòu)造平行線,利用平行線的性質(zhì)求解即可.(3)利用(1)中結(jié)論,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解決問題即可.【詳解】解:(1)證明:如圖1中,過點(diǎn)E作ET∥AB.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如圖2-1中,當(dāng)點(diǎn)E在CA的延長線上時,過點(diǎn)E作ET∥AB.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如圖2-2中,當(dāng)點(diǎn)E在AC的延長線上時,過點(diǎn)E作ET∥AB.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如圖,設(shè)∠ABE=∠EBM=x,∠CDE=∠EDM=y,∵AB∥CD,∴∠BMD=∠ABM+∠CDM,∴m=2x+2y,∴x+y=m,∵∠BFD=∠ABF+∠CDF,∠ABE=n∠EBF,∠CDE=n∠EDF,∴∠BFD===.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了平行線的性質(zhì),角平分線的定義等知識,解題的關(guān)鍵是學(xué)會條件常用輔助線,構(gòu)造平行線解決問題,屬于中考??碱}型.5.(1)①35°;(2)55°;(2)存在,或【分析】(1)①依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠PCG的度數(shù);②依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠ECG=∠GCF=20°解析:(1)①35°;(2)55°;(2)存在,或【分析】(1)①依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠PCG的度數(shù);②依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠ECG=∠GCF=20°,再根據(jù)PQ∥CE,即可得出∠CPQ=∠ECP=60°;(2)設(shè)∠EGC=3x,∠EFC=2x,則∠GCF=3x-2x=x,分兩種情況討論:①當(dāng)點(diǎn)G、F在點(diǎn)E的右側(cè)時,②當(dāng)點(diǎn)G、F在點(diǎn)E的左側(cè)時,依據(jù)等量關(guān)系列方程求解即可.【詳解】解:(1)①∵AB∥CD,∴∠CEB+∠ECQ=180°,∵∠CEB=110°,∴∠ECQ=70°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=35°;②∵AB∥CD,∴∠QCG=∠EGC,∵∠QCG+∠ECG=∠ECQ=70°,∴∠EGC+∠ECG=70°,又∵∠EGC-∠ECG=30°,∴∠EGC=50°,∠ECG=20°,∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(70°?40°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.(2)52.5°或7.5°,設(shè)∠EGC=3x°,∠EFC=2x°,①當(dāng)點(diǎn)G、F在點(diǎn)E的右側(cè)時,∵AB∥CD,∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,則∠GCF=∠QCG-∠QCF=3x°-2x°=x°,∴∠PCF=∠PCQ=∠FCQ=∠EFC=x°,則∠ECG=∠GCF=∠PCF=∠PCD=x°,∵∠ECD=70°,∴4x=70°,解得x=17.5°,∴∠CPQ=3x=52.5°;②當(dāng)點(diǎn)G、F在點(diǎn)E的左側(cè)時,反向延長CD到H,∵∠EGC=3x°,∠EFC=2x°,∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,∴∠ECG=∠GCF=∠GCH-∠FCH=x°,∵∠CGF=180°-3x°,∠GCQ=70°+x°,∴180-3x=70+x,解得x=27.5,∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,∴∠PCQ=∠FCQ=62.5°,∴∠CPQ=∠ECP=62.5°-55°=7.5°,【點(diǎn)睛】本題主要考查了平行線的性質(zhì),掌握兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯角相等是解題的關(guān)鍵.二、解答題6.(1)見解析;(2)見解析;(3)見解析;.【分析】(1)過點(diǎn)C作,得到,再根據(jù),,得到,進(jìn)而得到,最后證明;(2)先證明,再證明,得到,問題得證;(3)根據(jù)題意得到,根據(jù)(2)結(jié)論得到∠D解析:(1)見解析;(2)見解析;(3)見解析;.【分析】(1)過點(diǎn)C作,得到,再根據(jù),,得到,進(jìn)而得到,最后證明;(2)先證明,再證明,得到,問題得證;(3)根據(jù)題意得到,根據(jù)(2)結(jié)論得到∠DEF=∠ECA=,進(jìn)而得到,根據(jù)三角形內(nèi)角和即可求解.【詳解】解:(1)過點(diǎn)C作,,,,,,,,,;(2)解:,,又,,,,,,;(3)如圖三角形DEF即為所求作三角形.∵,∴,由(2)得,DE∥AC,∴∠DEF=∠ECA=,∵,∴∠ACB=,∴,∴∠A=180°-=.故答案為為:.【點(diǎn)睛】本題考查了平行線的判定,三角形的內(nèi)角和等知識,綜合性較強(qiáng),熟練掌握相關(guān)知識,根據(jù)題意畫出圖形是解題關(guān)鍵.7.(1);(2);(3)不發(fā)生變化,理由見解析【分析】(1)如圖1,延長DE交AB于點(diǎn)F,根據(jù)平行線的性質(zhì)推出;(2)如圖2,過點(diǎn)E作ES∥AB,過點(diǎn)H作HT∥AB,根據(jù)AB∥CD,AB∥E解析:(1);(2);(3)不發(fā)生變化,理由見解析【分析】(1)如圖1,延長DE交AB于點(diǎn)F,根據(jù)平行線的性質(zhì)推出;(2)如圖2,過點(diǎn)E作ES∥AB,過點(diǎn)H作HT∥AB,根據(jù)AB∥CD,AB∥ES推出,再根據(jù)AB∥TH,AB∥CD推出,最后根據(jù)比大得出的度數(shù);(3)如圖3,過點(diǎn)E作EQ∥DN,根據(jù)得出的度數(shù),根據(jù)條件再逐步求出的度數(shù).【詳解】(1)如答圖1所示,延長DE交AB于點(diǎn)F.AB∥CD,所以,又因為,所以,所以AC∥DF,所以.因為,所以.(2)如答圖2所示,過點(diǎn)E作ES∥AB,過點(diǎn)H作HT∥AB.設(shè),,因為AB∥CD,AB∥ES,所以,,所以,因為AB∥TH,AB∥CD,所以,,所以,因為比大,所以,所以,所以,所以(3)不發(fā)生變化如答圖3所示,過點(diǎn)E作EQ∥DN.設(shè),,由(2)易知,所以,所以,所以,所以.【點(diǎn)睛】本題考查了平行線的性質(zhì),求角的度數(shù),正確作出相關(guān)的輔助線,根據(jù)條件逐步求出角度的度數(shù)是解題的關(guān)鍵.8.(1)60°;(2)50°;(3)或【分析】(1)根據(jù)平行線的性質(zhì)可得的度數(shù),再根據(jù)角平分線的性質(zhì)可得的度數(shù),應(yīng)用三角形內(nèi)角和計算的度數(shù),由已知條件,可計算出的度數(shù);(2)根據(jù)題意畫出圖形,先解析:(1)60°;(2)50°;(3)或【分析】(1)根據(jù)平行線的性質(zhì)可得的度數(shù),再根據(jù)角平分線的性質(zhì)可得的度數(shù),應(yīng)用三角形內(nèi)角和計算的度數(shù),由已知條件,可計算出的度數(shù);(2)根據(jù)題意畫出圖形,先根據(jù)可計算出的度數(shù),由可計算出的度數(shù),再根據(jù)平行線的性質(zhì)和角平分線的性質(zhì),計算出的度數(shù),即可得出結(jié)論;(3)根據(jù)題意可分兩種情況,①若點(diǎn)運(yùn)動到上方,根據(jù)平行線的性質(zhì)由可計算出的度數(shù),再根據(jù)角平分線的性質(zhì)和平行線的性質(zhì),計算出的度數(shù),再,,列出等量關(guān)系求解即可等處結(jié)論;②若點(diǎn)運(yùn)動到下方,根據(jù)平行線的性質(zhì)由可計算出的度數(shù),再根據(jù)角平分線的性質(zhì)和平行線的性質(zhì),計算出的度數(shù),再,列出等量關(guān)系求解即可等處結(jié)論.【詳解】解:(1),,,平分,,,又,;(2)根據(jù)題意畫圖,如圖1所示,,,,,,,又平分,,;(3)①如圖2所示,,,平分,,,又,,,解得;②如圖3所示,,,平分,,,又,,,解得.綜上的度數(shù)為或.【點(diǎn)睛】本題主要考查平行線的性質(zhì)和角平分線的性質(zhì),兩直線平行,同位角相等.兩直線平行,同旁內(nèi)角互補(bǔ).

兩直線平行,內(nèi)錯角相等.合理應(yīng)用平行線的性質(zhì)是解決本題的關(guān)鍵.9.(1)圖見解析,,理由見解析;(2),理由見解析;(3)圖見解析,或.【分析】(1)根據(jù)平行線的畫法補(bǔ)全圖形即可得,根據(jù)平行線的性質(zhì)可得,由此即可得;(2)如圖(見解析),先根據(jù)平行線的性質(zhì)可解析:(1)圖見解析,,理由見解析;(2),理由見解析;(3)圖見解析,或.【分析】(1)根據(jù)平行線的畫法補(bǔ)全圖形即可得,根據(jù)平行線的性質(zhì)可得,由此即可得;(2)如圖(見解析),先根據(jù)平行線的性質(zhì)可得,再根據(jù)等量代換可得,然后根據(jù)平行線的判定即可得;(3)先根據(jù)點(diǎn)D的位置畫出如圖(見解析)的兩種情況,再分別利用平行線的性質(zhì)、對頂角相等即可得.【詳解】(1)由題意,補(bǔ)全圖形如下:,理由如下:,,,,;(2),理由如下:如圖,延長BA交DF于點(diǎn)O,,,,,;(3)由題意,有以下兩種情況:①如圖3-1,,理由如下:,,,,,由對頂角相等得:,;②如圖3-2,,理由如下:,,,,.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì)等知識點(diǎn),較難的是題(3),正確分兩種情況討論是解題關(guān)鍵.10.(1);(2)理由見解析;(3),理由見解析.【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過點(diǎn)B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°,∠1=∠解析:(1);(2)理由見解析;(3),理由見解析.【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過點(diǎn)B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°,∠1=∠DBC,則∠ABD=∠ABC?∠DBC=60°?∠1,進(jìn)而得出結(jié)論;(3)過點(diǎn)C作CP∥a,由角平分線定義得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行線的性質(zhì)得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出結(jié)論.【詳解】解:(1)如圖1,,,,;圖1(2)理由如下:如圖2.過點(diǎn)作,圖2,,,,,,;(3),圖3理由如下:如圖3,過點(diǎn)作,平分,,,又,,,,,又,,.【點(diǎn)睛】本題是三角形綜合題目,考查了平移的性質(zhì)、直角三角形的性質(zhì)、平行線的判定與性質(zhì)、角平分線定義、平角的定義等知識;本題綜合性強(qiáng),熟練掌握平移的性質(zhì)和平行線的性質(zhì)是解題的關(guān)鍵.三、解答題11.(1)∠E=45°;(2)∠E=;(3)不變化,【分析】(1)由三角形內(nèi)角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分線的性質(zhì),可得∠ECD=∠ECB=∠解析:(1)∠E=45°;(2)∠E=;(3)不變化,【分析】(1)由三角形內(nèi)角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分線的性質(zhì),可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,則可得∠E=(∠D+∠B),繼而求得答案;(2)首先延長BC交AD于點(diǎn)F,由三角形外角的性質(zhì),可得∠BCD=∠B+∠BAD+∠D,又由角平分線的性質(zhì),即可求得答案.(3)由三角形內(nèi)角和定理,可得,利用角平分線的性質(zhì)與三角形的外角的性質(zhì)可得答案.【詳解】解:(1)∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E,∴∠E=(∠D+∠B),∵∠ADC=50°,∠ABC=40°,∴∠AEC=×(50°+40°)=45°;(2)延長BC交AD于點(diǎn)F,∵∠BFD=∠B+∠BAD,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠E+∠ECB=∠B+∠EAB,∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD=∠B+∠BAE-(∠B+∠BAD+∠D)=(∠B-∠D),∠ADC=α°,∠ABC=β°,即∠AEC=(3)的值不發(fā)生變化,理由如下:如圖,記與交于,與交于,①,②,①-②得:AD平分∠BAC,【點(diǎn)睛】此題考查了三角形內(nèi)角和定理、三角形外角的性質(zhì)以及角平分線的定義.此題難度較大,注意掌握整體思想與數(shù)形結(jié)合思想的應(yīng)用.12.(1)36°或18°;(2)△AOB、△AOC都是“夢想三角形”,證明詳見解析;(3)∠B=36°或∠B=.【分析】(1)根據(jù)三角形內(nèi)角和等于180°,如果一個“夢想三角形”有一個角為108°,解析:(1)36°或18°;(2)△AOB、△AOC都是“夢想三角形”,證明詳見解析;(3)∠B=36°或∠B=.【分析】(1)根據(jù)三角形內(nèi)角和等于180°,如果一個“夢想三角形”有一個角為108°,可得另兩個角的和為72°,由三角形中一個內(nèi)角是另一個內(nèi)角的3倍時,可以分別求得最小角為180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比較得出答案即可;(2)根據(jù)垂直的定義、三角形內(nèi)角和定理求出∠ABO、∠OAC的度數(shù),根據(jù)“夢想三角形”的定義判斷即可;(3)根據(jù)同角的補(bǔ)角相等得到∠EFC=∠ADC,根據(jù)平行線的性質(zhì)得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根據(jù)角平分線的定義得到∠ADE=∠CDE,求得∠B=∠BCD,根據(jù)“夢想三角形”的定義求解即可.【詳解】解:當(dāng)108°的角是另一個內(nèi)角的3倍時,最小角為180°﹣108°﹣108÷3°=36°,當(dāng)180°﹣108°=72°的角是另一個內(nèi)角的3倍時,最小角為72°÷(1+3)=18°,因此,這個“夢想三角形”的最小內(nèi)角的度數(shù)為36°或18°.故答案為:18°或36°.(2)△AOB、△AOC都是“夢想三角形”證明:∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=30°,∴∠OAB=3∠ABO,∴△AOB為“夢想三角形”,∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON,∴∠OAC=80°﹣60°=20°,∴∠AOB=3∠OAC,∴△AOC是“夢想三角形”.(3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵AE平分∠ADC,∴∠ADE=∠CDE,∴∠B=∠BCD,∵△BCD是“夢想三角形”,∴∠BDC=3∠B,或∠B=3∠BDC,∵∠BDC+∠BCD+∠B=180°,∴∠B=36°或∠B=.【點(diǎn)睛】本題考查的是三角形內(nèi)角和定理、“夢想三角形”的概念,用分類討論的思想解決問題是解本題的關(guān)鍵.13.(1)∠DAE=14°;(2)∠DFE=14°;(3)∠DAE的大小不變,∠DAE=14°,證明詳見解析.【分析】(1)求出∠ADE的度數(shù),利用∠DAE=90°-∠ADE即可求出∠DAE解析:(1)∠DAE=14°;(2)∠DFE=14°;(3)∠DAE的大小不變,∠DAE=14°,證明詳見解析.【分析】(1)求出∠ADE的度數(shù),利用∠DAE=90°-∠ADE即可求出∠DAE的度數(shù).(2)求出∠ADE的度數(shù),利用∠DFE=90°-∠ADE即可求出∠DAE的度數(shù).(3)利用AE平分∠BEC,AD平分∠BAC,求出∠DFE=15°即是最好的證明.【詳解】(1)∵∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∴∠BAD=∠CAD=31°,∴∠ADE=∠B+∠BAD=45°+31°=76°,∵AE⊥BC,∴∠AEB=90°,∴∠DAE=90°-∠ADE=14°.(2)同(1),可得,∠ADE=76°,∵FE⊥BC,∴∠FEB=90°,∴∠DFE=90°-∠ADE=14°.(3)的大小不變.=14°理由:∵AD平分∠BAC,AE平分∠BEC∴∠BAC=2∠BAD,∠BEC=2∠AEB∵∠BAC+∠B+∠BEC+∠C=360°∴2∠BAD+2∠AEB=360°-∠B-∠C=242°∴∠BAD+∠AEB=121°∵∠ADE=∠B+∠BAD∴∠ADE=45°+∠BAD∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD)=135°-121°=14°【點(diǎn)睛】本題考查了三角形內(nèi)角和定理和三角形外角的性質(zhì),熟練掌握性質(zhì)是解題的關(guān)鍵.14.(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過點(diǎn)E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過點(diǎn)E作EF∥CD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論