青島市中考數(shù)學(xué)幾何綜合壓軸題模擬專題_第1頁
青島市中考數(shù)學(xué)幾何綜合壓軸題模擬專題_第2頁
青島市中考數(shù)學(xué)幾何綜合壓軸題模擬專題_第3頁
青島市中考數(shù)學(xué)幾何綜合壓軸題模擬專題_第4頁
青島市中考數(shù)學(xué)幾何綜合壓軸題模擬專題_第5頁
已閱讀5頁,還剩48頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

青島市中考數(shù)學(xué)幾何綜合壓軸題模擬專題一、中考幾何壓軸題1.折紙是一種許多人熟悉的活動.近些年,經(jīng)過許多人的努力,已經(jīng)找到了多種將正方形折紙的一邊三等分的精確折法,下面探討其中的一種折法:(綜合與實踐)操作一:如圖1,將正方形紙片ABCD對折,使點A與點D重合,點B與點C重合,再將正方形紙片ABCD展開,得到折痕MN;操作二:如圖2,將正方形紙片ABCD的右上角沿MC折疊,得到點D的對應(yīng)的點為D′;操作三:如圖3,將正方形紙片ABCD的左上角沿MD′折疊再展開,折痕MD′與邊AB交于點P;(問題解決)請在圖3中解決下列問題:(1)求證:BP=D′P;(2)AP:BP=;(拓展探究)(3)在圖3的基礎(chǔ)上,將正方形紙片ABCD的左下角沿CD′折疊再展開,折痕CD′與邊AB交于點Q.再將正方形紙片ABCD過點D′折疊,使點A落在AD邊上,點B落在BC邊上,然后再將正方形紙片ABCD展開,折痕EF與邊AD交于點E,與邊BC交于點F,如圖4.試探究:點Q與點E分別是邊AB,AD的幾等分點?請說明理由.2.如圖,已知和均為等腰三角形,AC=BC,DE=AE,將這兩個三角形放置在一起.(1)問題發(fā)現(xiàn):如圖①,當(dāng)時,點B、D、E在同一直線上,連接CE,則=°,線段BD、CE之間的數(shù)量關(guān)系是;(2)拓展探究:如圖②,當(dāng)時,點B、D、E在同一直線上,連接CE,請判斷的度數(shù)及線段BD、CE之間的數(shù)量關(guān)系,并說明理由;(3)解決問題:如圖③,,,AE=2,連接CE、BD,在繞點A旋轉(zhuǎn)的過程中,當(dāng)時,請直接寫出EC的長.3.某數(shù)學(xué)課外活動小組在學(xué)習(xí)了勾股定理之后,針對圖1中所示的“由直角三角形三邊向外側(cè)作多邊形,它們的面積之間的關(guān)系問題”進(jìn)行了以下探究:類比探究:(1)如圖2,在中,為斜邊,分別以為直徑,向外側(cè)作半圓,則面積之間的關(guān)系式為_____________;推廣驗證:(2)如圖3,在中,為斜邊,分別以為邊向外側(cè)作,,滿足,則(1)中所得關(guān)系式是否仍然成立?若成立,請證明你的結(jié)論;若不成立,請說明理由;拓展應(yīng)用:(3)如圖4,在五邊形中,,點在上,,求五邊形的面積.4.問題探究:(1)如圖①,已知在△ABC中,BC=4,∠BAC=45°,則AB的最大值是.(2)如圖②,已知在Rt△ABC中,∠ABC=90°,AB=BC,D為△ABC內(nèi)一點,且AD=2,BD=2.,CD=6,請求出∠ADB的度數(shù).問題解決:(3)如圖③,某戶外拓展基地計劃在一處空地上修建一個新的拓展游戲區(qū)△ABC,且AB=AC.∠BAC=120°,點A、B、C分別是三個任務(wù)點,點P是△ABC內(nèi)一個打卡點.按照設(shè)計要求,CP=30米,打卡點P對任務(wù)點A、B的張角為120°,即∠APB=120°.為保證游戲效果,需要A、P的距離與B、P的距離和盡可能大,試求出AP+BP的最大值.5.(模型構(gòu)建)如圖所示,在邊長為1的正方形中,的頂點,分別在,上(可與點,,重合),且滿足.的高線交線段于點(可與,重合),設(shè).(1)求的值.(模型拓展)在(模型構(gòu)建)的基礎(chǔ)上,將條件“邊長為1的正方形”改為“長、寬的矩形”(其他條件不變).(2)判斷的值是否改變.若改變,請求出的取值范圍;若不改變,請證明.(深入探究)在(模型構(gòu)建)的基礎(chǔ)上,設(shè)的面積為.(3)①求的最小值;②當(dāng)取到最小值時,直接寫出與的數(shù)量關(guān)系.6.綜合與實踐(問題背景)如圖1,矩形中,.點E為邊上一點,沿直線將矩形折疊,使點C落在邊的點處.(問題解決)(1)填空:的長為______.(2)如圖2,將沿線段向右平移,使點與點B重合,得到與交于點F,與交于點G.求的長;(拓展探究)(3)在圖2中,連接,則四邊形是平行四邊形嗎?若是,請予以證明;若不是,請說明理由.7.在與中,且,點D始終在線段AB上(不與A、B重合).(1)問題發(fā)現(xiàn):如圖1,若度,的度數(shù)______,______;(2)類比探究:如圖2,若度,試求的度數(shù)和的值;(3)拓展應(yīng)用:在(2)的條件下,M為DE的中點,當(dāng)時,BM的最小值為多少?直接寫出答案.8.(1)問題發(fā)現(xiàn)如圖1,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=45°,點E是線段AC上一動點,連接DE.填空:①則的值為______;②∠EAD的度數(shù)為_______.(2)類比探究如圖2,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=60°,點E是線段AC上一動點,連接DE.請求出的值及∠EAD的度數(shù);(3)拓展延伸如圖3,在(2)的條件下,取線段DE的中點M,連接AM、BM,若BC=4,則當(dāng)△ABM是直角三角形時,求線段AD的長.9.(1)(問題發(fā)現(xiàn))如圖①,正方形的兩邊分別在正方形的邊和上,連接.填空:①線段與的數(shù)量關(guān)系為______;②直線與所夾銳角的度數(shù)為_______.(2)(拓展探究)如圖②,將正方形繞點逆時針旋轉(zhuǎn),在旋轉(zhuǎn)的過程中,(1)中的結(jié)論是否仍然成立,請利用圖②進(jìn)行說明.(3)(解決問題)如圖③,在正方形中,,點M為直線上異于B,C的一點,以為邊作正方形,點N為正方形的中心,連接,若,直接寫出的長.10.某數(shù)學(xué)學(xué)習(xí)小組在復(fù)習(xí)線段垂直平分線性質(zhì)時,提出了以下幾個問題,請你幫他們解決:[數(shù)學(xué)理解](1)點是線段垂直平分線上的一點,則的值為;[拓展延伸](2)在平面直角坐標(biāo)系中,點,點在軸上,且,則點的坐標(biāo)為.(3)經(jīng)小組探究發(fā)現(xiàn),如圖,延長線段到點,使,以點為因心,長為半徑作園,則對于上任一點,都有,請你證明這個結(jié)論:[問題解決](4)如圖,某人乘船以25千米/時的速度沿一筆直的河從碼頭到碼頭,再立即坐車沿一筆直公路以75千米/時的速度回到住處,已知乘船和坐車所用的時間相等請在河邊上確定碼頭的位置.(請畫出示意圖并簡要說明理由)11.如圖1,已知直角三角形,,,點是邊上一點,過作于點,連接,點是中點,連接,.(1)發(fā)現(xiàn)問題:線段,之間的數(shù)量關(guān)系為______;的度數(shù)為______;(2)拓展與探究:若將繞點按順時針方向旋轉(zhuǎn)角,如圖2所示,(1)中的結(jié)論還成立嗎?請說明理由;(3)拓展與運用:如圖3所示,若繞點旋轉(zhuǎn)的過程中,當(dāng)點落到邊上時,邊上另有一點,,,連接,請直接寫出的長度.12.(性質(zhì)探究)如圖,在矩形ABCD中,對角線AC,BD相交于點O,AE平分∠BAC,交BC于點E.作DF⊥AE于點H,分別交AB,AC于點F,G.(1)判斷△AFG的形狀并說明理由.(2)求證:BF=2OG.(遷移應(yīng)用)(3)記△DGO的面積為S1,△DBF的面積為S2,當(dāng)時,求的值.(拓展延伸)(4)若DF交射線AB于點F,(性質(zhì)探究)中的其余條件不變,連結(jié)EF,當(dāng)△BEF的面積為矩形ABCD面積的時,請直接寫出tan∠BAE的值.13.問題發(fā)現(xiàn):(1)如圖1,與同為等邊三角形,連接則與的數(shù)量關(guān)系為________;直線與所夾的銳角為_________;類比探究:(2)與同為等腰直角三角形,其他條件同(1),請問(1)中的結(jié)論還成立嗎?請說明理由;拓展延伸:(3)中,為的中位線,將繞點逆時針自由旋轉(zhuǎn),已知,在自由旋轉(zhuǎn)過程中,當(dāng)在一條直線上時,請直接寫出的值.14.(1)問題發(fā)現(xiàn)如圖1,ABC是等邊三角形,點D,E分別在邊BC,AC上,若∠ADE=60°,則AB,CE,BD,DC之間的數(shù)量關(guān)系是.(2)拓展探究如圖2,ABC是等腰三角形,AB=AC,∠B=α,點D,E分別在邊BC,AC上.若∠ADE=α,則(1)中的結(jié)論是否仍然成立?請說明理由.(3)解決問題如圖3,在ABC中,∠B=30°,AB=AC=4cm,點P從點A出發(fā),以1cm/s的速度沿A→B方向勾速運動,同時點M從點B出發(fā),以cm/s的速度沿B→C方向勻速運動,當(dāng)其中一個點運動至終點時,另一個點隨之停止運動,連接PM,在PM右側(cè)作∠PMG=30°,該角的另一邊交射線CA于點G,連接PC.設(shè)運動時間為t(s),當(dāng)△APG為等腰三角形時,直接寫出t的值.15.如圖1所示,邊長為4的正方形與邊長為的正方形的頂點重合,點在對角線上.(問題發(fā)現(xiàn))如圖1所示,與的數(shù)量關(guān)系為________;(類比探究)如圖2所示,將正方形繞點旋轉(zhuǎn),旋轉(zhuǎn)角為,請問此時上述結(jié)論是否還成立?如成立寫出推理過程,如不成立,說明理由;(拓展延伸)若點為的中點,且在正方形的旋轉(zhuǎn)過程中,有點、、在一條直線上,直接寫出此時線段的長度為________16.(感知)(1)如圖①,在四邊形ABCD中,∠C=∠D=90°,點E在邊CD上,∠AEB=90°,求證:=.(探究)(2)如圖②,在四邊形ABCD中,∠C=∠ADC=90°,點E在邊CD上,點F在邊AD的延長線上,∠FEG=∠AEB=90°,且=,連接BG交CD于點H.求證:BH=GH.(拓展)(3)如圖③,點E在四邊形ABCD內(nèi),∠AEB+∠DEC=180°,且=,過E作EF交AD于點F,若∠EFA=∠AEB,延長FE交BC于點G.求證:BG=CG.17.如圖(1),在矩形中,,點分別是邊的中點,四邊形為矩形,連接.(1)問題發(fā)現(xiàn)在圖(1)中,_________;(2)拓展探究將圖(1)中的矩形繞點旋轉(zhuǎn)一周,在旋轉(zhuǎn)過程中,的大小有無變化?請僅就圖(2)的情形給出證明;(3)問題解決當(dāng)矩形旋轉(zhuǎn)至三點共線時,請直接寫出線段的長.18.問題情境:兩張直角三角形紙片中,.連接,,過點作的垂線,分別交線段,于點,(與在直線異側(cè)).特例分析:(1)如圖1,當(dāng)時,求證:;拓展探究:(2)當(dāng),探究下列問題:①如圖2,當(dāng)時,直接寫出線段與之間的數(shù)量關(guān)系:;②如圖3,當(dāng)時,猜想與之間的數(shù)量關(guān)系,并說明理由;推廣應(yīng)用:(3)若圖3中,,設(shè)的面積為,則的面積為.(用含,的式子表示)19.[探索發(fā)現(xiàn)](1)如圖①,△ABC與△ADE為等腰三角形,且兩頂角∠ABC=∠ADE,連接BD與CE,則△ABD與△ACE的關(guān)系是;[操作探究](2)在△ABC中,AB=AC=3,∠BAC=100°,D是BC的中點,在線段AD上任取一點P,連接PB,將線段PB繞點P按逆時針方向旋轉(zhuǎn)80°,點B的對應(yīng)點是點E,連接BE,得到△BPE,隨著點P在線段AD上位置的變化,點E的位置也在變化,點E可能在直線AD的左側(cè),也可能在直線AD上,還可能在直線AD的右側(cè).請你探究,當(dāng)點E在直線AD上時,如圖②所示,連接CE,判斷直線CE與直線AB的位置關(guān)系,并說明理由.[拓展應(yīng)用](3)在(2)的應(yīng)用下,請在圖③中畫出△BPE,使得點E在直線AD的右側(cè),連接CE,試求出點P在線段AD上運動時,AE的最小值.20.問題提出(1)如圖(1),在等邊三角形ABC中,點M是BC上的任意一點(不含端點B、C),連接AM,以AM為邊作等邊三角形AMN,連接CN,則∠ACN=°.類比探究(2)如圖(2),在等邊三角形ABC中,點M是BC延長線上的任意一點(不含端點C),其他條件不變,(1)中的結(jié)論還成立嗎?請說明理由.拓展延伸(3)如圖(3),在等腰三角形ABC中,BA=BC,點M是BC上的任意一點(不含端點B、C),連接AM,以AM為邊作等腰三角形AMN,使AM=MN,連接CN.添加一個條件,使得∠ABC=∠ACN仍成立,寫出你所添加的條件,并說明理由.【參考答案】***試卷處理標(biāo)記,請不要刪除一、中考幾何壓軸題1.(1)見解析;(2)2:1;(3)點Q是AB邊的四等分點,點E是AD邊的五等分點,理由見解析【分析】(1)如圖1,連接PC,根據(jù)正方形的性質(zhì)、HL定理證明△CD′P≌△CBP,根據(jù)全等三角形的性解析:(1)見解析;(2)2:1;(3)點Q是AB邊的四等分點,點E是AD邊的五等分點,理由見解析【分析】(1)如圖1,連接PC,根據(jù)正方形的性質(zhì)、HL定理證明△CD′P≌△CBP,根據(jù)全等三角形的性質(zhì)得出結(jié)論;(2)設(shè)BP=x,根據(jù)翻轉(zhuǎn)變換的性質(zhì)、勾股定理列出方程,解方程即可;(3)如圖2,連接QM,證明Rt△AQM≌Rt△D′QM(HL),得到AQ=D′Q,設(shè)正方形ABCD的邊長為1,AQ=QD′=y(tǒng),根據(jù)勾股定理列出方程,解方程即可.【詳解】(1)證明:如圖1,連接PC.∵四邊形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,∴∠MD′C=∠D=90°,∴∠CD′P=∠B=90°,在Rt△CD′P和Rt△CBP中,,∴Rt△CD′P≌Rt△CBP(HL),∴BP=D′P;(2)解:設(shè)正方形紙片ABCD的邊長為1.則AM=DM=D′M=.設(shè)BP=x,則MP=MD′+D′P=DM+BP=+x,AP=1﹣x,在Rt△AMP中,根據(jù)勾股定理得AM2+AP2=MP2.∴()2+(1﹣x)2=(+x)2,解得x=,∴BP=,AP=,∴AP:BP=2:1,故答案為:2:1.(3)解:點Q是AB邊的四等分點,點E是AD邊的五等分點.理由:如圖2,連接QM.∴∠QD′M=180°﹣∠MD′C=90°,∴∠QD′M=∠A=90°.在Rt△AQM和Rt△D′QM中,,∴Rt△AQM≌Rt△D′QM(HL),∴AQ=D′Q,設(shè)正方形ABCD的邊長為1,AQ=QD′=y(tǒng),則QP=AP﹣AQ=﹣y.在Rt△QPD′中,根據(jù)勾股定理得QD′2+D′P2=QP2.∵D′P=BP=,∴y2+()2=(﹣y)2,解得y=.∴AQ:AB=1:4,即點Q是AB邊的四等分點,∵EF∥AB,∴,即,解得AE=.∴點E為AD的五等分點.【點睛】本題是四邊形綜合題,考查了正方形的性質(zhì),折疊的性質(zhì),翻轉(zhuǎn)變換的性質(zhì)全等三角形的判定和性質(zhì),勾股定理等知識,熟練掌握折疊的性質(zhì)及方程思想是解題的關(guān)鍵.2.(1);(2),理由見解析;(3)CE的長為2或4,理由見解析.【分析】(1)證明,得出CE=BD,,即可得出結(jié)論;(2)證明,得出,,即可得出結(jié)論;(3)先判斷出,再求出:①當(dāng)點E在點D解析:(1);(2),理由見解析;(3)CE的長為2或4,理由見解析.【分析】(1)證明,得出CE=BD,,即可得出結(jié)論;(2)證明,得出,,即可得出結(jié)論;(3)先判斷出,再求出:①當(dāng)點E在點D上方時,先判斷出四邊形APDE是矩形,求出AP=DP=AE=2,再根據(jù)勾股定理求出,BP=6,得出BD=4;②當(dāng)點E在點D下方時,同①的方法得,AP=DP=AE=1,BP=6,進(jìn)而得出BD=BP+DP=8,即可得出結(jié)論.【詳解】解:(1)為等腰三角形,,∴是等邊三角形,同理可得是等邊三角形故答案為:.(2),理由如下:在等腰三角形ABC中,AC=BC,,,同理,,,,,,,,點B、D、E在同一條直線上:;(3)由(2)知,,,在中,,,①當(dāng)點E在點D上方時,如圖③,過點A作交BD的延長線于P,,,四邊形APDE是矩形,,矩形APDE是正方形,,在中,根據(jù)勾股定理得,,,;②當(dāng)點E在點D下方時,如圖④同①的方法得,AP=DP=AE=2,BP=6,BD=BP+DP=8,,綜上CE的長為2或4.【點睛】本題是幾何變換的綜合題,主要考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定和定理,相似三角形的判定和性質(zhì),勾股定理,等邊三角形的性質(zhì),判斷出三角形ACE和三角形ABD相似是關(guān)鍵.3.(1)S1+S2=S3,(2)成立,證明見解析,(3)【分析】(1)分別寫出三個半圓的面積,再利用勾股定理轉(zhuǎn)化即可.(2)先證明三個三角形相似,再計算出三個三角形的面積,即可得出結(jié)論.(3)解析:(1)S1+S2=S3,(2)成立,證明見解析,(3)【分析】(1)分別寫出三個半圓的面積,再利用勾股定理轉(zhuǎn)化即可.(2)先證明三個三角形相似,再計算出三個三角形的面積,即可得出結(jié)論.(3)先添加輔助線,在第二問的思路下,先證明三個三角形相似,得出三個三角形的面積關(guān)系,再利用30°、45°的直角三角形計算出相應(yīng)的邊,計算出五邊形的面積即可.【詳解】解:(1)設(shè)AB=b,AC=a,BC=c.則有:所以在Rt△ABC中,有a2+b2=c2,且故答案為:S1+S2=S3(2)∵∴設(shè)AB、AC、BC邊上的高分別為h1,h2,h3∴,設(shè)AB=b,AC=a,BC=c則∴又在Rt△ABC中,有a2+b2=c2∴故依然成立(3)連接PD、BD,作AF⊥BP,EM⊥PD∵∠ABP=30°,∠BAP=105°∴∠APB=45°在Rt△ABF中,AF=AB=,BF=3,在Rt△AFP中,AF=PF=,則AP=,∵∠A=∠E,∴△ABP∽△EDP∴∠EPD=45°∠EDP=30°∴∠BPD=90°又PE=∴PM=EM=1,MD=則PD=1+∴=所以五邊形的面積為:【點睛】本題考查勾股定理、與勾股定理有關(guān)的圖形問題、相似三角形.是中考的??贾R.4.(1)4(2)135°(3)PA+PB的最大值為米【分析】(1)作△ABC的外接圓,連接OA,OB,OC,求出OA=OB=OC=2,可得結(jié)論;(2)將△ABD繞點B順時針旋轉(zhuǎn)90°得到△CBT解析:(1)4(2)135°(3)PA+PB的最大值為米【分析】(1)作△ABC的外接圓,連接OA,OB,OC,求出OA=OB=OC=2,可得結(jié)論;(2)將△ABD繞點B順時針旋轉(zhuǎn)90°得到△CBT,連接DT,利用勾股定理的逆定理證明∠CTD=90°,可得結(jié)論;(3)將△ABP繞點A逆時針旋轉(zhuǎn)120°得到△ACK,延長CK交PA延長線于J,作△PJC的外接圓,連接OP,OC,OJ,證明PA+PB=JC,再求出JC的最大值即可求解.【詳解】(1)如圖①,作△ABC的外接圓,連接OA,OB,OC,∵∠BOC=2∠BAC=90°,OB=OC∴△OBC是等腰直角三角形∵BC=4∴OB=OC=2=OA∵AB≤OA+OB∴AB≤4∴AB的最大值為4故答案為:4;(2)如圖②,將△ABD繞點B順時針旋轉(zhuǎn)90°得到△CBT,連接DT由題意可得DT=BD=2,CT=AD=2∵CD=6∴∴∠CTD=90°,∵△BDT是等腰直角三角形∴∠DTB=45°∴∠CTB=45°+90°=135°∴∠ADB=∠CTB=135°(3)如圖③,將△ABP繞點A逆時針旋轉(zhuǎn)120°得到△ACK,延長CK交PA延長線于J,作△PJC的外接圓,連接OP,OC,OJ∵∠PAK=120°,∠AKC=∠APB=120°∴∠JAK=∠JKA=60°∴∠AJK=60°∴△JAK是等邊三角形∴AK=KJ∴∠COP=2∠AJK=120°∵PC=30∴OP=OC=OJ=∵CJ≤OJ+OC∴CJ≤∵PA+PB=AK+CK+KJ+KC=JC∴PA+PB的最大值為米.【點睛】此題主要考查旋轉(zhuǎn)的綜合運用,解題的關(guān)鍵是熟知三角形外接圓的性質(zhì)、三角函數(shù)的應(yīng)用、旋轉(zhuǎn)的性質(zhì)、等邊三角形的性質(zhì)、勾股定理的應(yīng)用及三角形的三邊關(guān)系的應(yīng)用.5.(1)=1;(2)改變,;(3)①=;②GB=()DG.【分析】(1)利用三點共線,可以求出k=1;(2)當(dāng)點G與點E重合時,DG取最小值,當(dāng)點F與點C重合時,DG取最大值,進(jìn)而求出k的取解析:(1)=1;(2)改變,;(3)①=;②GB=()DG.【分析】(1)利用三點共線,可以求出k=1;(2)當(dāng)點G與點E重合時,DG取最小值,當(dāng)點F與點C重合時,DG取最大值,進(jìn)而求出k的取值范圍;(3)①設(shè)BE=m,BF=n,利用一元二次方程的根與系數(shù)的關(guān)系進(jìn)行和不等式進(jìn)行求解;②根據(jù)①求出的EF=,由于ΔDEF為等腰三角形,EF為底,所以G為EF中點,易得GB=,進(jìn)而可以求出GB=()DG.【詳解】如圖1所示,把ΔDAE,ΔDCF分別沿著DE、DF翻折,在正方形ABCD中,ADC=DAB=DCB=90°’,AD=CD,ADE+CDF=ADC-EDF=90°-45°=45°,翻折后,AD,CD重合.設(shè)重合線為AG',則DG'E=DG'F=90°,DG'EF,且E、G'、F三點共線,則G'在EF上。又DGEF,DG'與DG重合,DG=DG'=AD.k==1.(2)k的值發(fā)生改變.①如圖2所示,當(dāng)點G與點E重合時,DG取最小值,DEF=90°又EDF=45°,ΔDEF是等腰直角三角形,則DE=EF.易證ΔADEΔBEF,AD=BE=6,AE=AB-BE=8-6=2,在RtΔADE中,由勾股定理,得DE=,②如圖3所示,當(dāng)點F與點C重合時,DG取最大值,EDC=45°,AB//DF,則AED=EDC=45°,ΔDAE是等腰直角三角形,則AD=AE=6,BE=AB-AE=8-6=2,在RtΔEBC中,由勾股定理得:CE=,易證ΔDGC~ΔCBE,,即DG=,,綜上所述,.(3)①設(shè)BE=m,BF=n,易知ΔBEF的周長為2.,一元二次方程有求根公式:,,所以,,則m,n是關(guān)于x的方程的兩個實數(shù)根,,解得:.S=DG·EF=EF,當(dāng)EF=時,S取最小值.②ΔDEF為等腰三角形,EF為底,G為EF中點,易得GB=EF=,GB=()DG.【點睛】本題考查了正方形、矩形、等腰三角形的性質(zhì)及一元二次方程的靈活運用,有一定的難度,解題關(guān)鍵是畫出正確的圖形進(jìn)行解答.6.(1)6;(2);(3)四邊形不是平行四邊形,理由見解析.【分析】(1)先根據(jù)已知條件和矩形的性質(zhì)可得CD=AB=10,AD=BC=8,再根據(jù)折疊的性質(zhì)可得DC'=DC=10,最后運用勾股定理解解析:(1)6;(2);(3)四邊形不是平行四邊形,理由見解析.【分析】(1)先根據(jù)已知條件和矩形的性質(zhì)可得CD=AB=10,AD=BC=8,再根據(jù)折疊的性質(zhì)可得DC'=DC=10,最后運用勾股定理解答即可;(2)先根據(jù)折疊的性質(zhì)和勾股定理可求得,進(jìn)而求得BE、EC,然后連接,根據(jù)平移的性質(zhì)可得,進(jìn)而說明,最后運用相似三角形的性質(zhì)解答即可;(3)先由折疊可得,再根據(jù)平移的性質(zhì)和等腰三角形的判定與性質(zhì)得到,過點作于點H,則且,根據(jù)相似三角形的性質(zhì)可得;設(shè),則,在中,運用勾股定理求得和DH;然后再在中求得,可以發(fā)現(xiàn)即,即可發(fā)現(xiàn)四邊形不可能是平行四邊形.【詳解】解:(1)如圖:∵矩形中,∴CD=AB=10,AD=BC=8根據(jù)折疊的性質(zhì)可得DC'=DC=10在直角三角形ADC'中,AC'=.(2)由折疊可知:.在中,根據(jù)勾股定理可求得,∴.在中,設(shè),根據(jù)勾股定理,得,解得,即.如圖:連接,則由平移可知,,且.于是可得,∴,又∵,∴.(3)四邊形不是平行四邊形,理由如下:由折疊可知;又∵平移可知,且,∴,∴,即是等腰三角形,∴.如圖,過點作于點H,則且,∴.設(shè),則,在中,根據(jù)勾股定理,得,解得,∴,∴.而在中,,根據(jù)勾股定理可求得,∴,即,故四邊形不可能是平行四邊形.【點睛】本題主要考查了矩形的性質(zhì)、勾股定理以及相似三角形的判定與性質(zhì),靈活運用相似三角形的判定與性質(zhì)成為解答本題的關(guān)鍵.7.(1)90度;1;(2)的度數(shù)為90度,的值為;(3)BM的最小值為1.【分析】(1)度,利用SAS證明,即可得出,的值為1;(2)度,證明,即可得出,;(3)當(dāng)CD最小時,即CD垂直于AB解析:(1)90度;1;(2)的度數(shù)為90度,的值為;(3)BM的最小值為1.【分析】(1)度,利用SAS證明,即可得出,的值為1;(2)度,證明,即可得出,;(3)當(dāng)CD最小時,即CD垂直于AB時,CD最小,此時DE最小,而BM是直角三角形DBE斜邊上的中線,直角三角形斜邊上的中線等于斜邊的一半.【詳解】(1)①∵∴∴∵,∴∴,∴∴,∴,的值為1;(2)在中,,令,則,同理令,∴,∴①∵即∴②有①②得∴,∴(3)在中,,∴,當(dāng)CD最小時,即CD垂直于AB時,CD最小,此時DE最小,而,∴,而BM是直角三角形DBE斜邊上的中線,∴【點睛】本題涉及全等三角形的性質(zhì)與判定、相似三角形的性質(zhì)與判定、特殊的三角函數(shù)值和直角三角形的性質(zhì).是一個綜合性比較強的題目,要熟練掌握各個知識點.8.(1)1,;(2),∠EAD=90°;(3)線段AD的長為(2+6).【分析】(1)由題意可得Rt△ABC和Rt△DBE均為等腰直角三角形,通過證明△ABD≌△BCE,可得AD=EC,∠DAB=解析:(1)1,;(2),∠EAD=90°;(3)線段AD的長為(2+6).【分析】(1)由題意可得Rt△ABC和Rt△DBE均為等腰直角三角形,通過證明△ABD≌△BCE,可得AD=EC,∠DAB=∠BCE=45°,從而可得到結(jié)論;(2)通過證明△ABD∽△BCE,可得的值,∠BAD=∠ACB=60°,即可求∠EAD的度數(shù);(3)由直角三角形的性質(zhì)可證AM=BM=DE,即可求DE=4,由勾股定理可求CE的長,從而可求出AD的長.【詳解】(1)∵∠ABC=∠DBE=90°,∠ACB=∠BED=45°,∴∠CBE=∠ABD,∠CAB=45°∴AB=BC,BE=DE,∴△BCE≌△BAD∴AD=CE,∠BAD=∠BCE=45°∴=1,∠EAD=∠CAB+∠BAD=90°故答案為:1,(2),∠EAD=90°理由如下:∵∠ABC=∠DBE=90°,∠ACB=∠BED=60°∴∠ABD=∠EBC,∠BAC=∠BDE=30°∴在Rt△ABC中,tan∠ACB==tan60°=在Rt△DBE中,tan∠BED==tan60°=∴=又∵∠ABD=∠EBC∴△ABD∽△BCE∴==,∠BAD=∠ACB=60°∵∠BAC=30°∴∠EAD=∠BAD+∠BAC=60°+30°=90°,(3)如圖,由(2)知:==,∠EAD=90°∴AD=CE,在Rt△ABC中,∠BAC=30°,BC=4,∴AC=8,AB=4,∵∠EAD=∠EBD=90°,且點M是DE的中點,∴AM=BM=DE,∵△ABM為直角三角形,∴AM2+BM2=AB2=(4)2=48,∴AM=BM=2,∴DE=4,設(shè)EC=x,則AD=x,AE=8-xRt△ADE中,AE2+AD2=DE2∴(8-x)2+(x)2=(4)2,解之得:x=2+2(負(fù)值舍去),∴EC=2+2,∴AD=CE=2+6,∴線段AD的長為(2+6),【點睛】本題是相似形綜合題,考查了相似三角形的判定和性質(zhì),勾股定理,等腰三角形的性質(zhì),直角三角形的性質(zhì)等知識.9.(1)①;②;(2)仍然成立,證明見解析;(3)或【分析】(1)【問題發(fā)現(xiàn)】連接.易證,,三點共線.易知.,推出,從而得出與所夾銳角的度數(shù);(2)【拓展探究】連接,,延長交的延長線于點,交于點解析:(1)①;②;(2)仍然成立,證明見解析;(3)或【分析】(1)【問題發(fā)現(xiàn)】連接.易證,,三點共線.易知.,推出,從而得出與所夾銳角的度數(shù);(2)【拓展探究】連接,,延長交的延長線于點,交于點,根據(jù)四邊形的性質(zhì)得到,根據(jù)得到,根據(jù)相似三角形的性質(zhì)即可解決問題;(3)【解決問題】需分兩種情況討論:①當(dāng)點M在線段BC上時,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,∠MAN=45°,可得∠BAM=∠CAN,根據(jù),可得△ABM∽△CAN,從而得到CN=BM,根據(jù),可得到BM=AC-CM=2,從而可求出CN的值;②當(dāng)點M在線段BC的延長線上時,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,∠MAN=45°,可得∠BAM=∠CAN,根據(jù),可得△ABM∽△CAN,從而得到CN=BM,根據(jù),可得到BM=AC+CM=6,從而可求出CN的值.【詳解】解:(1)【問題發(fā)現(xiàn)】如圖①中,①線段與的數(shù)量關(guān)系為;②直線與所夾銳角的度數(shù)為.理由:如圖①中,連接.易證,,三點共線.∵.,∴.故答案為,.(2)【拓展探究】結(jié)論不變.理由:連接,,延長交的延長線于點,交于點.∵,∴,∵,∴,∴,∴,∴,∵,∴.(3)【解決問題】①當(dāng)點M在線段BC上時,如圖,連接AB,AN,∵四邊形ADBC,四邊形AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC-∠MAC=∠MAN-∠MAC,即∠BAM=∠CAN,∵,∴△ABM∽△CAN,∴,∴CN=BM,∵,∴BM=AC-CM=2,∴CN=BM=;②當(dāng)點M在線段BC的延長線上時,如圖,連接AB,AN,∵四邊形ADBC,四邊形AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC+∠MAC=∠MAN+∠MAC,即∠BAM=∠CAN,∵,∴△ABM∽△CAN,∴,∴CN=BM,∵,∴BM=AC+CM=2=6,∴CN=BM=.【點睛】本題考查了正方形的性質(zhì),相似三角形的判定與性質(zhì).解題的關(guān)鍵是正確尋找相似三角形解決問題.10.(1)1;(2)或;(3)見解析;(4)以的中點為圓心,為半徑作,則與河邊的交點為所求點的位置,畫出示意圖見解析;簡要理由見解析.【分析】(1)直接利用垂直平分線的性質(zhì)證明即可;(2)根據(jù)求解析:(1)1;(2)或;(3)見解析;(4)以的中點為圓心,為半徑作,則與河邊的交點為所求點的位置,畫出示意圖見解析;簡要理由見解析.【分析】(1)直接利用垂直平分線的性質(zhì)證明即可;(2)根據(jù)求出的長,再根據(jù),即可求出點的坐標(biāo);(3)連接,根據(jù)推出,從而推出,證明,即可證明;(4)在線段上作點,使,在線段的延長線上作點,使,以的中點為圓心,為半徑作,則與河邊的交點為所求點的位置.同(3)證明即可證明結(jié)論.【詳解】(1)∵點是線段垂直平分線上的一點,∴,∴,故答案為:1;(2)∵∴,∵,∴,∴點的坐標(biāo)為或,故答案為:或;(3)如圖,連接,∵,,∴,∵的半徑為,∴,∴.∴,∴.∵,∴,∴.∴.(4)如圖,在線段上作點,使,在線段的延長線上作點,使.以的中點為圓心,為半徑作,則與河邊的交點為所求點的位置.簡要理由:由于水路速度為陸路速度的,且時間相等,所以水路的距離必為陸路距離的,即需,連接,同(3)可證,∵,,∴,∴,∴,同理可得,∴又∵,由此,得.【點睛】本題主要考查了相似三角形的判定和性質(zhì),垂直平分線的性質(zhì),準(zhǔn)確的理解題意畫出圖形和作出正確的輔助線是解題的關(guān)鍵.11.(1),;(2)結(jié)論成立,理由見解析;(3).【分析】(1)先根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,再根據(jù)等腰三角形的性質(zhì)、三角形的外角性質(zhì)即可求出的度數(shù);(2)如圖(見解析),先根據(jù)解析:(1),;(2)結(jié)論成立,理由見解析;(3).【分析】(1)先根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,再根據(jù)等腰三角形的性質(zhì)、三角形的外角性質(zhì)即可求出的度數(shù);(2)如圖(見解析),先根據(jù)直角三角形斜邊上的中線等于斜邊的一半、三角形中位線定理可得,再根據(jù)等腰三角形的性質(zhì)、平行線的性質(zhì)、三角形的外角性質(zhì)可得,然后根據(jù)三角形全等的判定定理與性質(zhì)可得,最后根據(jù)平行線的性質(zhì)、等邊三角形的判定與性質(zhì)、角的和差即可求出的度數(shù);(3)如圖(見解析),先根據(jù)直角三角形的性質(zhì)可得,從而可得,再分別在和中,根據(jù)直角三角形的性質(zhì)、勾股定理可得,從而可得,然后在中,利用勾股定理即可得.【詳解】(1)在中,,點是中點,,同理可得:,,在中,,,,又,,,,,,,;(2)結(jié)論成立,理由如下:如圖,分別取AB的中點為M,取AD的中點為N,連接FM、CM、EN、FN,,,又點是中點,是的中位線,,,同理可得:,,繞點按順時針方向旋轉(zhuǎn)角,,,,,,,,,同理可得:,,在和中,,,,,是等邊三角形,,,,,,,;(3)如圖,過點G作,交AE延長線于點F,在中,,,,,由旋轉(zhuǎn)的性質(zhì)得:,在中,,,在中,,,,則在中,.【點睛】本題考查了直角三角形的性質(zhì)、三角形中位線定理、三角形全等的判定定理與性質(zhì)、旋轉(zhuǎn)的性質(zhì)等知識點,較難的是題(2),通過作輔助線,構(gòu)造全等三角形是解題關(guān)鍵.12.(1)等腰三角形,理由見解析;(2)見解析;(3);(4)或【分析】(1)如圖1中,△AFG是等腰三角形,利用全等三角形的性質(zhì)證明即可.(2)如圖2中,過點O作OL∥AB交DF于L,則∠AFG解析:(1)等腰三角形,理由見解析;(2)見解析;(3);(4)或【分析】(1)如圖1中,△AFG是等腰三角形,利用全等三角形的性質(zhì)證明即可.(2)如圖2中,過點O作OL∥AB交DF于L,則∠AFG=∠OLG.首先證明OG=OL,再證明BF=2OL即可解決問題.(3)如圖3中,過點D作DK⊥AC于K,則∠DKA=∠CDA=90°,利用相似三角形的性質(zhì)解決問題即可.(4)設(shè)OG=a,AG=k.分兩種情形:①如圖4中,連接EF,當(dāng)點F在線段AB上時,點G在OA上.②如圖5中,當(dāng)點F在AB的延長線上時,點G在線段OC上,連接EF.分別求解即可解決問題.【詳解】(1)解:如圖1中,△AFG是等腰三角形.理由:∵AE平分∠BAC,∴∠1=∠2,∵DF⊥AE,∴∠AHF=∠AHG=90°,∵AH=AH,∴△AHF≌△AHG(ASA),∴AF=AG,∴△AFG是等腰三角形.(2)證明:如圖2中,過點O作OL∥AB交DF于L,則∠AFG=∠OLG.∵AF=AG,∴∠AFG=∠AGF,∵∠AGF=∠OGL,∴∠OGL=∠OLG,∴OG=OL,∵OL∥AB,∴△DLO∽△DFB,∴,∵四邊形ABCD是矩形,∴BD=2OD,∴BF=2OL,∴BF=2OG.(3)解:如圖3中,過點D作DK⊥AC于K,則∠DKA=∠CDA=90°,∵∠DAK=∠CAD,∴△ADK∽△ACD,∴,∵S1=?OG?DK,S2=?BF?AD,又∵BF=2OG,,∴,設(shè)CD=2x,AC=3x,則AD=,∴.(4)解:設(shè)OG=a,AG=k.①如圖4中,連接EF,當(dāng)點F在線段AB上時,點G在OA上.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k+2a,AC=2(k+a),∴AD2=AC2﹣CD2=[2(k+a)]2﹣(k+2a)2=3k2+4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴,∴,∴,由題意:=AD?(k+2a),∴AD2=10ka,即10ka=3k2+4ka,∴k=2a,∴AD=,∴BE==,AB=4a,∴tan∠BAE=.②如圖5中,當(dāng)點F在AB的延長線上時,點G在線段OC上,連接EF.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k﹣2a,AC=2(k﹣a),∴AD2=AC2﹣CD2=[2(k﹣a)]2﹣(k﹣2a)2=3k2﹣4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴,∴,∴,由題意:=AD?(k﹣2a),∴AD2=10ka,即10ka=3k2﹣4ka,∴k=,∴AD=,∴,AB=,∴tan∠BAE=,綜上所述,tan∠BAE的值為或.【點睛】本題是一道綜合題,主要涉及到等腰三角形的判定及其性質(zhì)、全等三角形的判定和性質(zhì)、三角形中位線定理、相似三角形的判定及其性質(zhì)、勾股定理的應(yīng)用等知識點,解題的關(guān)鍵是綜合運用所學(xué)到的相關(guān)知識.13.(1),;(2)不成立,見解析;(3)2或4【分析】(1)根據(jù)題意,利用等邊三角形的性質(zhì),得出,再根據(jù)全等三角形對應(yīng)角相等,得出,故得出與所夾的銳角為60°.(2)根據(jù)題意,利用等腰直角三角形解析:(1),;(2)不成立,見解析;(3)2或4【分析】(1)根據(jù)題意,利用等邊三角形的性質(zhì),得出,再根據(jù)全等三角形對應(yīng)角相等,得出,故得出與所夾的銳角為60°.(2)根據(jù)題意,利用等腰直角三角形的性質(zhì)可推出,再根據(jù)相似三角形對應(yīng)角相等,得出,故得出直線與所夾的銳角為45°,與(1)結(jié)論不符.(3)此問需要分兩種情況討論,一種情況是當(dāng)在直線上,該種情況需要先證明,從而根據(jù)相似三角形的性質(zhì)得到,最后根據(jù)全等三角形的性質(zhì)求出;另一種情況是,當(dāng)在直線下,先證明,從而證明四邊形為矩形,最后求出.【詳解】解:(1);60°解答如下:如圖1,與為等邊三角形,,在與中,,故答案為:;直線與所夾的銳角為60°.(2)不成立理由如下:與為等腰直角三角形,,,,即:,在與中,故(1)中的結(jié)論不成立;(3)的長度為2或4;①點在直線上方時如圖4,,,②點在直線下方時,如圖5,∥根據(jù)題意,易證四邊形為矩形,,故答案為綜上可得的長度為2或4【點睛】本題考查了等邊三角形的性質(zhì)、等腰直角三角形的三邊關(guān)系、旋轉(zhuǎn)的性質(zhì)、矩形的判定及性質(zhì)相似三角形的判定及性質(zhì),綜合性比較強,熟練掌握性質(zhì)定理是解題的關(guān)鍵.(1)利用等邊三角形的性質(zhì),從而證明三角形全等是解答該小問的關(guān)鍵.(2)根據(jù)等腰直角三角形的三邊關(guān)系,證明兩個三角形相似是解答第二問的關(guān)鍵,重點掌握相似三角形的判定方法.(3)解答本題時,首先要認(rèn)識到旋轉(zhuǎn)過程中滿足題意的兩種情況,其次證明過程可參考上面的證明過程,最后如何判定四邊形為矩形也是解答最后一題第二種情況的關(guān)鍵.14.(1);(2)結(jié)論成立,見解析;(3)1或2【分析】(1)問題發(fā)現(xiàn):通過角的關(guān)系可證△ABD∽△DCE,根據(jù)相似三角形對應(yīng)邊成比例可得到線段的關(guān)系;(2)拓展探究:可證明△ABD∽△DCE,解析:(1);(2)結(jié)論成立,見解析;(3)1或2【分析】(1)問題發(fā)現(xiàn):通過角的關(guān)系可證△ABD∽△DCE,根據(jù)相似三角形對應(yīng)邊成比例可得到線段的關(guān)系;(2)拓展探究:可證明△ABD∽△DCE,即可得到結(jié)論;(3)解決問題:可證△PBM∽△MCG,然后得到,用t可表示線段的長,當(dāng)G點在線段AC上時,若△APG為等腰三角形時,則AP=AG,代入計算即可;當(dāng)G點在CA延長線上時,若△APG為等腰三角形時,則△APG為等邊三角形,代入計算得到t.【詳解】解:(1)問題發(fā)現(xiàn)AB,CE,BD,DC之間的數(shù)量關(guān)系是:,理由:∵△ABC是等邊三角形,∴∠B=∠C=60°,∴∠BAD+∠ADB=180°﹣60°=120°,∠ADE=60°,∴∠CDE+∠ADB=180°﹣60°=120°,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴.故答案為:.(2)拓展探究(1)中的結(jié)論成立,∵AB=AC,∠B=α,∴∠B=∠C=α,∴∠BAD+∠ADB=180°﹣α,∵∠ADE=α,∴∠CDE+∠ADB=180°﹣α,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴;(3)解決問題∵∠B=30°,AB=AC=4cm,∴∠B=∠C=30°,∴∠BPM+∠PMB=180°﹣30°=150°,∵∠PMG=30°,∴∠CMG+∠PMB=180°﹣30°=150°,∴∠BPM=∠CMG,又∠B=∠C=30°,∴△PBM∽△MCG,∴,由題意可知AP=t,BM=t,即BP=4﹣t,如圖1,過點A作AH⊥BC于H,∵∠B=30°,AB=AC=4cm,∴AH=2cm,BH===2cm,∵AB=AC,AH⊥BC,∴BC=2BH=4cm,∴MC=(4t)cm,∴,即CG=3t,當(dāng)G點在線段AC上時,若△APG為等腰三角形時,則AP=AG,如圖2,此時AG=AC﹣CG=4﹣3t,∴4﹣3t=t,解得:t=1,當(dāng)G點在CA延長線上時,若△APG為等腰三角形時,如圖3,此時∠PAG=180°﹣120°=60°,則△APG為等邊三角形,AP=AG,此時AG=CG﹣AC=3t﹣4,∴3t﹣4=t,解得:t=2,∴當(dāng)△APG為等腰三角形時,t的值為1或2.【點睛】本題是三角形綜合題,考查了等腰三角形的性質(zhì),等邊三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),熟練掌握分類的思想方法是解題的關(guān)鍵.15.【問題發(fā)現(xiàn)】;【類比探究】上述結(jié)論還成立,理由見解析;【拓展延伸】或.【分析】問題發(fā)現(xiàn):證出AB∥EF,由平行線分線段成比例定理得出,即可得出結(jié)論;類比探究:證明△ACE∽△BCF,得出,即解析:【問題發(fā)現(xiàn)】;【類比探究】上述結(jié)論還成立,理由見解析;【拓展延伸】或.【分析】問題發(fā)現(xiàn):證出AB∥EF,由平行線分線段成比例定理得出,即可得出結(jié)論;類比探究:證明△ACE∽△BCF,得出,即可的結(jié)論;拓展延伸:分兩種情況,連接CE交GF于H,由正方形的性質(zhì)得出AB=BC=4,AC=AB=4,GF=CE=CF,GH=HF=HE=HC,得出CF=BC=2,GF=CE=2,HF=HE=HC=,由勾股定理求出AH==,即可得出答案.【詳解】問題發(fā)現(xiàn):AE=BF,理由如下:∵四邊形和四邊形是正方形,∴,,CE=CF,,∴,∴,∴AE=BF;故答案為:AE=BF;類比探究:上述結(jié)論還成立,理由如下:連接,如圖2所示:∵,∴,在和中,CE=CF,CA=CB,∴,∴,∴,∴AE=BF;拓展延伸:分兩種情況:①如圖3所示:連接交于,∵四邊形和四邊形是正方形,∴,AC=AB=4,GF=CE=CF,,∵點為的中點,∴,GF=CE=2,GH=HF=HE=HC=,∴∴AG=AH+HG=;②如圖4所示:連接交于,同①得:GH=HF=HE=HC=,∴,∴AG=AH-HG=;故答案為:或.【點睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、平行線分線段成比例定理、相似三角形的判定與性質(zhì)、勾股定理等知識;熟練掌握正方形的性質(zhì),證明三角形相似是解題的關(guān)鍵.16.(1)見解析(2)見解析(3)見解析【分析】(1)證得∠BEC=∠EAD,證明Rt△AED∽Rt△EBC,由相似三角形的性質(zhì)得出,則可得出結(jié)論;(2)過點G作GM⊥CD于點M,由(解析:(1)見解析(2)見解析(3)見解析【分析】(1)證得∠BEC=∠EAD,證明Rt△AED∽Rt△EBC,由相似三角形的性質(zhì)得出,則可得出結(jié)論;(2)過點G作GM⊥CD于點M,由(1)可知,證得BC=GM,證明△BCH≌△GMH(AAS),可得出結(jié)論;(3)在EG上取點M,使∠BME=∠AFE,過點C作CN∥BM,交EG的延長線于點N,則∠N=∠BMG,證明△AEF∽△EBM,由相似三角形的性質(zhì)得出,證明△DEF∽△ECN,則,得出,則BM=CN,證明△BGM≌△CGN(AAS),由全等三角形的性質(zhì)可得出結(jié)論.【詳解】(1)∵∠C=∠D=∠AEB=90°,∴∠BEC+∠AED=∠AED+∠EAD=90°,∴∠BEC=∠EAD,∴Rt△AED∽Rt△EBC,∴;(2)如圖1,過點G作GM⊥CD于點M,同(1)的理由可知:,∵,,∴,∴CB=GM,在△BCH和△GMH中,,∴△BCH≌△GMH(AAS),∴BH=GH;(3)證明:如圖2,在EG上取點M,使∠BME=∠AFE,過點C作CN∥BM,交EG的延長線于點N,則∠N=∠BMG,∵∠EAF+∠AFE+∠AEF=∠AEF+∠AEB+∠BEM=180°,∠EFA=∠AEB,∴∠EAF=∠BEM,∴△AEF∽△EBM,∴,∵∠AEB+∠DEC=180°,∠EFA+∠DFE=180°,而∠EFA=∠AEB,∴∠CED=∠EFD,∵∠BMG+∠BME=180°,∴∠N=∠EFD,∵∠EFD+∠EDF+∠FED=∠FED+∠DEC+∠CEN=180°,∴∠EDF=∠CEN,∴△DEF∽△ECN,∴,又∵,∴,∴BM=CN,在△BGM和△CGN中,,∴△BGM≌△CGN(AAS),∴BG=CG.【點睛】本題考查了直角三角形的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),平行線的性質(zhì)等知識,熟練掌握相似三角形的判定與性質(zhì)是解題的關(guān)鍵.17.(1);(2)的大小無變化,證明見解析;(3)或【分析】(1延長FG交BC于點H,可根據(jù)題意分別求出,的長,即可求的值;(2)連接,先由勾股定理計算的值,再計算,最后根據(jù)相似三角形的判定與性質(zhì)解析:(1);(2)的大小無變化,證明見解析;(3)或【分析】(1延長FG交BC于點H,可根據(jù)題意分別求出,的長,即可求的值;(2)連接,先由勾股定理計算的值,再計算,最后根據(jù)相似三角形的判定與性質(zhì)解題即可;(3)采用分類討論法解題,一種是點在線段上,另一種是點在的延長線上,據(jù)此分別求解即可.【詳解】(1)解:延長FG交BC于點H,則,,故答案為:(2)的大小無變化.證明:如圖(1),連接,由題意可知:,∴,即,在矩形中,,∴,∴,在矩形中,,∴,∴,∴,∴,∴;(3)或如圖(2),圖(3):如圖(2),當(dāng)點在線段上,由(2)知,,,在中,;當(dāng)點在的延長線上時,由(2)知,,,在中,綜上所述,或【點睛】本題考查勾股定理、相似三角形的判定與性質(zhì)等知識,其中涉及分類討論思想,綜合性較強,有一定難度,熟練并靈活運用知識是解題的關(guān)鍵.18.(1)詳見解析;(2)①;②,證明詳見解析;(3).【分析】(1)在等腰三角形ABM中三線合一,即AM還為三角形的角平分線與底邊中線,可用AAS證,可得,即可得證;(2)①由題意可知,,,且,解析:(1)詳見解析;(2)①;②,證明詳見解析;(3).【分析】(1)在等腰三角形ABM中三線合一,即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論