![人教A版高中數(shù)學(xué)(選擇性必修第一冊(cè))同步講義第30講 3.3.1拋物線及其標(biāo)準(zhǔn)方程(含解析)_第1頁(yè)](http://file4.renrendoc.com/view/ed2ddecce2c89d952a6a79109f7b0cbe/ed2ddecce2c89d952a6a79109f7b0cbe1.gif)
![人教A版高中數(shù)學(xué)(選擇性必修第一冊(cè))同步講義第30講 3.3.1拋物線及其標(biāo)準(zhǔn)方程(含解析)_第2頁(yè)](http://file4.renrendoc.com/view/ed2ddecce2c89d952a6a79109f7b0cbe/ed2ddecce2c89d952a6a79109f7b0cbe2.gif)
![人教A版高中數(shù)學(xué)(選擇性必修第一冊(cè))同步講義第30講 3.3.1拋物線及其標(biāo)準(zhǔn)方程(含解析)_第3頁(yè)](http://file4.renrendoc.com/view/ed2ddecce2c89d952a6a79109f7b0cbe/ed2ddecce2c89d952a6a79109f7b0cbe3.gif)
![人教A版高中數(shù)學(xué)(選擇性必修第一冊(cè))同步講義第30講 3.3.1拋物線及其標(biāo)準(zhǔn)方程(含解析)_第4頁(yè)](http://file4.renrendoc.com/view/ed2ddecce2c89d952a6a79109f7b0cbe/ed2ddecce2c89d952a6a79109f7b0cbe4.gif)
![人教A版高中數(shù)學(xué)(選擇性必修第一冊(cè))同步講義第30講 3.3.1拋物線及其標(biāo)準(zhǔn)方程(含解析)_第5頁(yè)](http://file4.renrendoc.com/view/ed2ddecce2c89d952a6a79109f7b0cbe/ed2ddecce2c89d952a6a79109f7b0cbe5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第05講3.3.1拋物線及其標(biāo)準(zhǔn)方程課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)①掌握拋物線的定義、標(biāo)準(zhǔn)方程和拋物線的簡(jiǎn)單性質(zhì)。②了解拋物線在實(shí)際問題中的初步應(yīng)用。通過本節(jié)課的學(xué)習(xí),要求掌握拋物線的定義,標(biāo)準(zhǔn)方程及相關(guān)的條件,并能應(yīng)用拋物線的定義解決實(shí)際問題知識(shí)點(diǎn)01:拋物線的定義1、拋物線的定義:平面內(nèi)與一個(gè)定點(diǎn)SKIPIF1<0和一條定直線SKIPIF1<0(其中定點(diǎn)SKIPIF1<0不在定直線SKIPIF1<0上)的距離相等的點(diǎn)的軌跡叫做拋物線,定點(diǎn)SKIPIF1<0叫做拋物線的焦點(diǎn),定直線SKIPIF1<0叫做拋物線的準(zhǔn)線.2、拋物線的數(shù)學(xué)表達(dá)式:SKIPIF1<0(SKIPIF1<0為點(diǎn)SKIPIF1<0到準(zhǔn)線SKIPIF1<0的距離).【即學(xué)即練1】(2023春·四川涼山·高二寧南中學(xué)校聯(lián)考期末)已知拋物線SKIPIF1<0上一點(diǎn)P到y(tǒng)軸的距離為2,焦點(diǎn)為F,則SKIPIF1<0(
)A.2 B.3 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由題得拋物線的準(zhǔn)線方程為SKIPIF1<0,所以點(diǎn)P到準(zhǔn)線的距離為SKIPIF1<0,由拋物線的定義得SKIPIF1<03.故選:B
知識(shí)點(diǎn)02:拋物線的標(biāo)準(zhǔn)方程設(shè)SKIPIF1<0,拋物線的標(biāo)準(zhǔn)方程、類型及其幾何性質(zhì):方程SKIPIF1<0(SKIPIF1<0)SKIPIF1<0(SKIPIF1<0)SKIPIF1<0(SKIPIF1<0)SKIPIF1<0(SKIPIF1<0)圖形焦點(diǎn)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0準(zhǔn)線SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0【即學(xué)即練2】(2023秋·高二課時(shí)練習(xí))已知拋物線的標(biāo)準(zhǔn)方程如下,分別求其焦點(diǎn)和準(zhǔn)線方程:(1)SKIPIF1<0;(2)SKIPIF1<0.【答案】(1)焦點(diǎn)為SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0;(2)焦點(diǎn)為SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0.【詳解】(1)由拋物線方程為SKIPIF1<0,可得SKIPIF1<0,且焦點(diǎn)在SKIPIF1<0軸正半軸上,所以可得其焦點(diǎn)為SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0;(2)將SKIPIF1<0化成標(biāo)準(zhǔn)方程為SKIPIF1<0,可得SKIPIF1<0,且焦點(diǎn)在SKIPIF1<0軸負(fù)半軸上,所以焦點(diǎn)為SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0.特別說明:1、要注意弄清拋物線四種形式的標(biāo)準(zhǔn)方程的特征及其對(duì)應(yīng)拋物線的形狀(焦點(diǎn)位置、開口方向等).拋物線的標(biāo)準(zhǔn)方程中,有一個(gè)一次項(xiàng)和一個(gè)二次項(xiàng),二次項(xiàng)的系數(shù)為1,一次項(xiàng)的系數(shù)為SKIPIF1<0;若一次項(xiàng)的字母是SKIPIF1<0,則焦點(diǎn)就在SKIPIF1<0軸上,若其系數(shù)是正的,則焦點(diǎn)就在SKIPIF1<0軸的正半軸上(開口向右),若系數(shù)是負(fù)的,焦點(diǎn)就在SKIPIF1<0軸的負(fù)半軸上(開口向左);若一次項(xiàng)的字母是SKIPIF1<0,則焦點(diǎn)就在SKIPIF1<0軸上,若其系數(shù)是正的,則焦點(diǎn)就在SKIPIF1<0軸的正半軸上(開口向上),若系數(shù)是負(fù)的,焦點(diǎn)就在SKIPIF1<0軸的負(fù)半軸上(開口向下).2、焦點(diǎn)的非零坐標(biāo)是標(biāo)準(zhǔn)方程下一次項(xiàng)系數(shù)的.3、準(zhǔn)線與坐標(biāo)軸的交點(diǎn)和拋物線的焦點(diǎn)關(guān)于原點(diǎn)對(duì)稱.4、(1)通徑:過焦點(diǎn)且垂直于對(duì)稱軸的弦長(zhǎng)等于SKIPIF1<0,通徑是過焦點(diǎn)最短的弦.(2)拋物線SKIPIF1<0(SKIPIF1<0)上一點(diǎn)SKIPIF1<0到焦點(diǎn)SKIPIF1<0的距離SKIPIF1<0,也稱為拋物線的焦半徑.題型01拋物線定義的理解【典例1】(2023秋·陜西西安·高二統(tǒng)考期末)若拋物線SKIPIF1<0上一點(diǎn)SKIPIF1<0到SKIPIF1<0軸的距離為SKIPIF1<0,則點(diǎn)SKIPIF1<0到拋物線的焦點(diǎn)SKIPIF1<0的距離為.【答案】4【詳解】由題意可得,SKIPIF1<0,P縱坐標(biāo)為SKIPIF1<0,由其解析式可得P橫坐標(biāo)為SKIPIF1<0,由拋物線定義知SKIPIF1<0.故答案為:4【典例2】(2023·四川成都·四川省成都列五中學(xué)校考三模)若拋物線SKIPIF1<0上的點(diǎn)P到焦點(diǎn)的距離為8,到SKIPIF1<0軸的距離為6,則拋物線SKIPIF1<0的標(biāo)準(zhǔn)方程是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由拋物線定義可得:SKIPIF1<0,解得SKIPIF1<0,所以拋物線SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0.故選:C
【變式1】(2023春·陜西榆林·高二統(tǒng)考期末)已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0在SKIPIF1<0上,若SKIPIF1<0到直線SKIPIF1<0的距離為7,則SKIPIF1<0.【答案】SKIPIF1<0【詳解】由拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0在SKIPIF1<0上,且SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,可得SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,即點(diǎn)SKIPIF1<0到準(zhǔn)線的距離為SKIPIF1<0,根據(jù)拋物線的定義,可得點(diǎn)SKIPIF1<0到焦點(diǎn)的距離等于點(diǎn)SKIPIF1<0到準(zhǔn)線的距離,所以SKIPIF1<0.故答案為:SKIPIF1<0.【變式2】(2023春·江西宜春·高三江西省宜春中學(xué)??茧A段練習(xí))若拋物線SKIPIF1<0上一點(diǎn)SKIPIF1<0到焦點(diǎn)的距離是該點(diǎn)到SKIPIF1<0軸距離的3倍,則SKIPIF1<0.【答案】SKIPIF1<0/3.5【詳解】由題知:SKIPIF1<0,故由焦半徑公式得:SKIPIF1<0.故答案為:SKIPIF1<0.題型02利用拋物線定義求方程【典例1】(2023春·江西·高三校聯(lián)考階段練習(xí))設(shè)圓SKIPIF1<0與y軸交于A,B兩點(diǎn)(A在B的上方),過B作圓O的切線l,若動(dòng)點(diǎn)P到A的距離等于P到l的距離,則動(dòng)點(diǎn)P的軌跡方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】因?yàn)閳ASKIPIF1<0與SKIPIF1<0軸交于SKIPIF1<0,SKIPIF1<0兩點(diǎn)(SKIPIF1<0在SKIPIF1<0的上方),所以SKIPIF1<0,SKIPIF1<0,又因?yàn)檫^SKIPIF1<0作圓SKIPIF1<0的切線SKIPIF1<0,所以切線SKIPIF1<0的方程為SKIPIF1<0,因?yàn)閯?dòng)點(diǎn)SKIPIF1<0到SKIPIF1<0的距離等于SKIPIF1<0到SKIPIF1<0的距離,所以動(dòng)點(diǎn)SKIPIF1<0的軌跡為拋物線,且其焦點(diǎn)為SKIPIF1<0,準(zhǔn)線為SKIPIF1<0,所以SKIPIF1<0的軌跡方程為SKIPIF1<0.故選:A.【典例2】(2023·全國(guó)·高三專題練習(xí))已知?jiǎng)狱c(diǎn)SKIPIF1<0的坐標(biāo)滿足SKIPIF1<0,則動(dòng)點(diǎn)SKIPIF1<0的軌跡方程為.【答案】SKIPIF1<0【詳解】設(shè)SKIPIF1<0直線SKIPIF1<0SKIPIF1<0,則動(dòng)點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的距離為SKIPIF1<0,動(dòng)點(diǎn)SKIPIF1<0到直線SKIPIF1<0SKIPIF1<0的距離為SKIPIF1<0,又因?yàn)镾KIPIF1<0SKIPIF1<0,所以動(dòng)點(diǎn)M的軌跡是以SKIPIF1<0為焦點(diǎn),SKIPIF1<0為準(zhǔn)線的拋物線,其軌跡方程為SKIPIF1<0.故答案為:SKIPIF1<0【變式1】(2023·全國(guó)·高三專題練習(xí))已知點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0且與y軸垂直的直線為SKIPIF1<0,SKIPIF1<0軸,交SKIPIF1<0于點(diǎn)N,直線l垂直平分FN,交SKIPIF1<0于點(diǎn)M.求點(diǎn)M的軌跡方程;【答案】SKIPIF1<0【詳解】由題意得SKIPIF1<0,即動(dòng)點(diǎn)M到點(diǎn)SKIPIF1<0的距離和到直線SKIPIF1<0的距離相等,所以點(diǎn)M的軌跡是以SKIPIF1<0為焦點(diǎn),直線SKIPIF1<0為準(zhǔn)線的拋物線,根據(jù)拋物線定義可知點(diǎn)M的軌跡方程為SKIPIF1<0;【變式2】(2023·全國(guó)·高三專題練習(xí))動(dòng)點(diǎn)SKIPIF1<0到y(tǒng)軸的距離比它到定點(diǎn)SKIPIF1<0的距離小2,求動(dòng)點(diǎn)SKIPIF1<0的軌跡方程.【答案】SKIPIF1<0或SKIPIF1<0.【詳解】解:∵動(dòng)點(diǎn)M到y(tǒng)軸的距離比它到定點(diǎn)SKIPIF1<0的距離小2,∴動(dòng)點(diǎn)M到定點(diǎn)SKIPIF1<0的距離與它到定直線SKIPIF1<0的距離相等.∴動(dòng)點(diǎn)M到軌跡是以SKIPIF1<0為焦點(diǎn),SKIPIF1<0為準(zhǔn)線的拋物線,且SKIPIF1<0.∴拋物線的方程為SKIPIF1<0,又∵x軸上點(diǎn)SKIPIF1<0左側(cè)的點(diǎn)到y(tǒng)軸的距離比它到SKIPIF1<0點(diǎn)的距離小2,∴M點(diǎn)的軌跡方程為SKIPIF1<0②.綜上,得動(dòng)點(diǎn)M的軌跡方程為SKIPIF1<0或SKIPIF1<0.題型03拋物線上點(diǎn)到定點(diǎn)距離及最值【典例1】(2023春·河南焦作·高二統(tǒng)考開學(xué)考試)已知點(diǎn)A是拋物線SKIPIF1<0上的點(diǎn),點(diǎn)SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值SKIPIF1<0.故選:A【典例2】(2023春·云南昭通·高三校考階段練習(xí))拋物線SKIPIF1<0上任意一點(diǎn)P到點(diǎn)SKIPIF1<0的距離最小值為.【答案】SKIPIF1<0【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)取得最小值4,故答案為:4【變式1】(2023·全國(guó)·高三專題練習(xí))動(dòng)點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,則點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的距離的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.12【答案】B【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值,最小值為SKIPIF1<0故選:B【變式2】(2023·全國(guó)·高三專題練習(xí))已知點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,點(diǎn)SKIPIF1<0在圓SKIPIF1<0上,則SKIPIF1<0長(zhǎng)度的最小值為.【答案】3【詳解】因?yàn)閽佄锞€和圓都關(guān)于橫軸對(duì)稱,所以不妨設(shè)SKIPIF1<0,設(shè)圓SKIPIF1<0的圓心坐標(biāo)為:SKIPIF1<0,半徑為1,因此SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0長(zhǎng)度的最小值為SKIPIF1<0,故答案為:SKIPIF1<0題型04拋物線上點(diǎn)到定點(diǎn)與焦點(diǎn)距離的和(差)最值【典例1】(2023秋·陜西·高二校聯(lián)考期末)已知拋物線SKIPIF1<0:SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,拋物線SKIPIF1<0上有一動(dòng)點(diǎn)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.8 B.16 C.11 D.26【答案】C【詳解】因?yàn)閽佄锞€SKIPIF1<0:SKIPIF1<0,所以拋物線SKIPIF1<0的準(zhǔn)線為SKIPIF1<0,記拋物線SKIPIF1<0的準(zhǔn)線為SKIPIF1<0,作SKIPIF1<0于SKIPIF1<0,如圖所示:因?yàn)镾KIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0共線時(shí),SKIPIF1<0有最小值,最小值為SKIPIF1<0.故選:C.【典例2】(2023春·甘肅武威·高二武威第六中學(xué)??计谥校㏒KIPIF1<0是拋物線SKIPIF1<0的焦點(diǎn),點(diǎn)SKIPIF1<0,SKIPIF1<0為拋物線上一點(diǎn),SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,則SKIPIF1<0的最小值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.3 D.SKIPIF1<0【答案】C【詳解】由題設(shè),拋物線焦點(diǎn)SKIPIF1<0,準(zhǔn)線為SKIPIF1<0,故SKIPIF1<0,如上圖:SKIPIF1<0,僅當(dāng)SKIPIF1<0共線且SKIPIF1<0在SKIPIF1<0兩點(diǎn)之間時(shí)等號(hào)成立.故選:C【典例3】(2023·全國(guó)·高三專題練習(xí))已知點(diǎn)SKIPIF1<0是坐標(biāo)平面內(nèi)一定點(diǎn),若拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0是拋物線上的一動(dòng)點(diǎn),則SKIPIF1<0的最小值是.【答案】SKIPIF1<0/SKIPIF1<0【詳解】拋物線的準(zhǔn)線方程為SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0垂直準(zhǔn)線于點(diǎn)SKIPIF1<0,SKIPIF1<0顯然,當(dāng)SKIPIF1<0平行于SKIPIF1<0軸時(shí),SKIPIF1<0取得最小值,此時(shí)SKIPIF1<0,此時(shí)SKIPIF1<0故答案為:SKIPIF1<0.【變式1】(2023秋·內(nèi)蒙古巴彥淖爾·高二??计谀c(diǎn)SKIPIF1<0是拋物線SKIPIF1<0的焦點(diǎn),直線SKIPIF1<0為拋物線的準(zhǔn)線,點(diǎn)SKIPIF1<0為直線SKIPIF1<0上一動(dòng)點(diǎn),點(diǎn)SKIPIF1<0在以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓上,點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】如圖,過點(diǎn)P作SKIPIF1<0于點(diǎn)N,根據(jù)拋物線的定義可得:SKIPIF1<0,所以SKIPIF1<0,而SKIPIF1<0所以SKIPIF1<0.當(dāng)且僅當(dāng)點(diǎn)Q、點(diǎn)N、點(diǎn)M在同一條直線上時(shí)等號(hào)成立,所以SKIPIF1<0有最大值1.故選:B【變式2】(2023秋·高二單元測(cè)試)已知拋物線SKIPIF1<0的焦點(diǎn)為F,點(diǎn)M(3,6),點(diǎn)Q在拋物線上,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【詳解】拋物線SKIPIF1<0的準(zhǔn)線方程為SKIPIF1<0,過SKIPIF1<0作準(zhǔn)線SKIPIF1<0的垂線,垂足為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0與準(zhǔn)線垂直時(shí),取等號(hào).所以SKIPIF1<0的最小值為SKIPIF1<0.
故答案為:SKIPIF1<0.題型05根據(jù)拋物線方程求焦點(diǎn)和準(zhǔn)線【典例1】2.(2023春·四川·高二統(tǒng)考期末)拋物線SKIPIF1<0的焦點(diǎn)坐標(biāo)是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由SKIPIF1<0得SKIPIF1<0,故焦點(diǎn)為SKIPIF1<0,故選:B【典例2】(2023春·上海浦東新·高二統(tǒng)考期末)拋物線SKIPIF1<0的準(zhǔn)線方程是.【答案】SKIPIF1<0【詳解】因?yàn)閽佄锞€的方程為SKIPIF1<0,所以拋物線SKIPIF1<0的準(zhǔn)線方程是SKIPIF1<0.故答案為:SKIPIF1<0.【變式1】(2023·青海西寧·統(tǒng)考二模)已知函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的圖像過定點(diǎn)A,若拋物線SKIPIF1<0也過點(diǎn)A,則拋物線的準(zhǔn)線方程為.【答案】x=-1【詳解】因?yàn)楹瘮?shù)SKIPIF1<0經(jīng)過定點(diǎn)SKIPIF1<0,所以函數(shù)SKIPIF1<0經(jīng)過定點(diǎn)SKIPIF1<0,將它代入拋物線方程得SKIPIF1<0,解得SKIPIF1<0,所以其準(zhǔn)線方程為SKIPIF1<0;故答案為:SKIPIF1<0.題型06拋物線的焦半徑公式【典例1】(2023春·廣東廣州·高二統(tǒng)考期末)已知拋物線SKIPIF1<0上的點(diǎn)SKIPIF1<0到其焦點(diǎn)的距離為SKIPIF1<0,則點(diǎn)SKIPIF1<0的橫坐標(biāo)是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】設(shè)點(diǎn)SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0,拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0,該拋物線的準(zhǔn)線方程為SKIPIF1<0,因?yàn)閽佄锞€SKIPIF1<0上的點(diǎn)SKIPIF1<0到其焦點(diǎn)的距離為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.故選:C.【典例2】(多選)(2023秋·廣西河池·高二統(tǒng)考期末)已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,若SKIPIF1<0為坐標(biāo)原點(diǎn),則(
)A.點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BD【詳解】由題可知SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,且SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,故選:BD.【變式1】(2023·安徽滁州·安徽省定遠(yuǎn)中學(xué)??级#┮阎猄KIPIF1<0為拋物線SKIPIF1<0上一點(diǎn),點(diǎn)SKIPIF1<0到SKIPIF1<0的焦點(diǎn)的距離為SKIPIF1<0,則SKIPIF1<0的焦點(diǎn)坐標(biāo)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由題意可知,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0又知拋物線SKIPIF1<0的準(zhǔn)線方程為SKIPIF1<0,根據(jù)拋物線的定義可知,SKIPIF1<0,整理得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的焦點(diǎn)坐標(biāo)為SKIPIF1<0,故選:C.【變式2】(2023春·四川宜賓·高二四川省宜賓市第四中學(xué)校校考期末)拋物線SKIPIF1<0上的點(diǎn)SKIPIF1<0到焦點(diǎn)SKIPIF1<0的距離為SKIPIF1<0,則點(diǎn)SKIPIF1<0的縱坐標(biāo)為.【答案】1【詳解】拋物線SKIPIF1<0,SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,依題意可知,SKIPIF1<0,得SKIPIF1<0,故答案為:SKIPIF1<0題型07求拋物線方程【典例1】(2023春·四川南充·高二四川省南充高級(jí)中學(xué)校考期中)準(zhǔn)線方程為SKIPIF1<0的拋物線的標(biāo)準(zhǔn)方程是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】根據(jù)題意,拋物線的準(zhǔn)線方程為SKIPIF1<0,即其焦點(diǎn)在SKIPIF1<0軸負(fù)半軸上,且SKIPIF1<0,得SKIPIF1<0,故其標(biāo)準(zhǔn)方程為:SKIPIF1<0.故選:D.【典例2】(2023春·內(nèi)蒙古呼倫貝爾·高二校考階段練習(xí))經(jīng)過點(diǎn)SKIPIF1<0的拋物線的標(biāo)準(zhǔn)方程是(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】C【詳解】設(shè)拋物線的方程為SKIPIF1<0或SKIPIF1<0,將點(diǎn)SKIPIF1<0代入,可得SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,故拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0或SKIPIF1<0,故選:C【典例3】(2023·全國(guó)·高三專題練習(xí))已知拋物線SKIPIF1<0同時(shí)滿足以下三個(gè)條件①SKIPIF1<0的頂點(diǎn)在坐標(biāo)原點(diǎn);②SKIPIF1<0的對(duì)稱軸為坐標(biāo)軸;③SKIPIF1<0的焦點(diǎn)SKIPIF1<0在圓SKIPIF1<0上.則SKIPIF1<0的方程為.(寫出一個(gè)滿足題意的即可),【答案】SKIPIF1<0(答案不唯一,只需填寫SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0中的任意一個(gè))【詳解】由已知得:拋物線SKIPIF1<0的焦點(diǎn)SKIPIF1<0在坐標(biāo)軸上;若拋物線的焦點(diǎn)在SKIPIF1<0軸上,將SKIPIF1<0代入SKIPIF1<0可得:SKIPIF1<0,SKIPIF1<0拋物線的焦點(diǎn)為SKIPIF1<0,SKIPIF1<0;當(dāng)拋物線的焦點(diǎn)為SKIPIF1<0時(shí),拋物線的方程為SKIPIF1<0;當(dāng)拋物線的焦點(diǎn)為SKIPIF1<0時(shí),拋物線的方程為SKIPIF1<0;若拋物線的焦點(diǎn)在SKIPIF1<0軸上,將SKIPIF1<0代入SKIPIF1<0可得:SKIPIF1<0或SKIPIF1<0,SKIPIF1<0拋物線的焦點(diǎn)為SKIPIF1<0,SKIPIF1<0;當(dāng)拋物線的焦點(diǎn)為SKIPIF1<0時(shí),拋物線的方程為SKIPIF1<0;當(dāng)拋物線的焦點(diǎn)為SKIPIF1<0時(shí),拋物線的方程為SKIPIF1<0;則可同時(shí)滿足三個(gè)條件的拋物線SKIPIF1<0的方程為SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0(答案不唯一,只需填寫SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0中的任意一個(gè)).【變式1】(2023·河南新鄉(xiāng)·統(tǒng)考三模)已知拋物線SKIPIF1<0的焦點(diǎn)為F,C上一點(diǎn)SKIPIF1<0滿足SKIPIF1<0,則拋物線C的方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】解:依題意得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,解得SKIPIF1<0,所以拋物線SKIPIF1<0的方程為SKIPIF1<0.故選:D【變式2】(2023·全國(guó)·高三專題練習(xí))設(shè)點(diǎn)F是拋物線SKIPIF1<0的焦點(diǎn),l是該拋物線的準(zhǔn)線,過拋物線上一點(diǎn)A作準(zhǔn)線的垂線AB,垂足為B,射線AF交準(zhǔn)線l于點(diǎn)C,若SKIPIF1<0,SKIPIF1<0,則拋物線的方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】解:由題意得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0可得SKIPIF1<0,由拋物線的定義得SKIPIF1<0所以SKIPIF1<0是等邊三角形,所以SKIPIF1<0,所以拋物線的方程是SKIPIF1<0.故選:B【變式3】(2023·全國(guó)·高二專題練習(xí))已知拋物線SKIPIF1<0上一點(diǎn)SKIPIF1<0到焦點(diǎn)SKIPIF1<0的距離SKIPIF1<0.求拋物線SKIPIF1<0的方程;【答案】SKIPIF1<0【詳解】因?yàn)閽佄锞€SKIPIF1<0上一點(diǎn)SKIPIF1<0到焦點(diǎn)SKIPIF1<0的距離SKIPIF1<0,所以拋物線的定義得SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.所以拋物線的方程為SKIPIF1<0;題型08拋物線的實(shí)際問題【典例1】(2023·全國(guó)·高二專題練習(xí))清代青花瓷蓋碗是中國(guó)傳統(tǒng)茶文化的器物載體,具有“溫潤(rùn)”“淡遠(yuǎn)”“清新”的特征.如圖,已知碗體和碗蓋的內(nèi)部均近似為拋物線形狀,碗蓋深為SKIPIF1<0,碗蓋口直徑為SKIPIF1<0,碗體口直徑為SKIPIF1<0,碗體深SKIPIF1<0,則蓋上碗蓋后,碗蓋內(nèi)部最高點(diǎn)到碗底的垂直距離為(碗和碗蓋的厚度忽略不計(jì))(
)
A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】以碗體的最低點(diǎn)為原點(diǎn),向上方向?yàn)镾KIPIF1<0軸,建立直角坐標(biāo)系,如圖所示.
設(shè)碗體的拋物線方程為SKIPIF1<0(SKIPIF1<0),將點(diǎn)SKIPIF1<0代入,得SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,設(shè)蓋上碗蓋后,碗蓋內(nèi)部最高點(diǎn)到碗底的垂直距離為SKIPIF1<0SKIPIF1<0,則兩拋物線在第一象限的交點(diǎn)為SKIPIF1<0,代入到SKIPIF1<0,解得SKIPIF1<0,解得SKIPIF1<0.故選:C【典例2】(2023春·廣東韶關(guān)·高二??茧A段練習(xí))有一個(gè)隧道內(nèi)設(shè)雙行線公路,其截面由一長(zhǎng)方形和拋物線構(gòu)成,如圖所示.為了保證安全,要求行駛車輛頂部(設(shè)為平頂)與隧道頂部在豎直方向上的高度之差至少為0.7m,若行車道總寬度為7.2m,則車輛通過隧道時(shí)的限制高度為m.【答案】3.8【詳解】由題意,如圖建系:則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,如圖可設(shè),拋物線方程為SKIPIF1<0,將SKIPIF1<0代入,可得SKIPIF1<0,求得SKIPIF1<0,故拋物線方程為SKIPIF1<0,將SKIPIF1<0代入拋物線方程,可得SKIPIF1<0,SKIPIF1<0.故答案為:3.8.【變式1】(2023春·甘肅白銀·高二校考期末)圖中是拋物線形拱橋,當(dāng)水面在SKIPIF1<0時(shí),拱頂距離水面2米,水面寬度為8米,則當(dāng)水面寬度為10米時(shí),拱頂與水面之間的距離為(
)A.SKIPIF1<0米 B.SKIPIF1<0米 C.SKIPIF1<0米 D.SKIPIF1<0米【答案】D【詳解】以拱頂為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,可設(shè)拱橋所在拋物線的方程為SKIPIF1<0,又拋物線過點(diǎn)SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,則拋物線的方程為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故當(dāng)水面寬度為SKIPIF1<0米時(shí),拱頂與水面之間的距離為SKIPIF1<0米.故選:D【變式2】(2023·全國(guó)·高三專題練習(xí))數(shù)學(xué)與建筑的結(jié)合造就建筑藝術(shù),如圖,吉林大學(xué)的校門是一拋物線形水泥建筑物,若將校門輪廓(忽略水泥建筑的厚度)近似看成拋物線SKIPIF1<0的一部分,其焦點(diǎn)坐標(biāo)為SKIPIF1<0.校門最高點(diǎn)到地面距離約為18.2米,則校門位于地面寬度最大約為(
)A.18米 B.21米 C.24米 D.27米【答案】C【詳解】依題意知,拋物線SKIPIF1<0,即SKIPIF1<0,因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以拋物線方程為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以校門位于地面寬度最大約為SKIPIF1<0米.故選:C.A夯實(shí)基礎(chǔ)B能力提升C綜合素養(yǎng)A夯實(shí)基礎(chǔ)一、單選題1.(2023春·江西萍鄉(xiāng)·高二校聯(lián)考階段練習(xí))拋物線SKIPIF1<0的焦點(diǎn)到其準(zhǔn)線的距離為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由拋物線SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,所以拋物線的焦點(diǎn)坐標(biāo)為SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0所以該拋物線的焦點(diǎn)到其準(zhǔn)線的距離為SKIPIF1<0.故選:C.2.(2023春·河南南陽(yáng)·高二校聯(lián)考階段練習(xí))拋物線C:SKIPIF1<0過點(diǎn)SKIPIF1<0,則C的準(zhǔn)線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】拋物線C:SKIPIF1<0過點(diǎn)SKIPIF1<0,則SKIPIF1<0,解之得SKIPIF1<0,則拋物線C方程為SKIPIF1<0,則C的準(zhǔn)線方程為SKIPIF1<0故選:B3.(2023春·廣東東莞·高二校聯(lián)考階段練習(xí))一種衛(wèi)星接收天線(如圖1),其曲面與軸截面的交線可視為拋物線的一部分(如圖2),已知該衛(wèi)星接收天線的口徑SKIPIF1<0米,深度SKIPIF1<0米,信號(hào)處理中心SKIPIF1<0位于焦點(diǎn)處,以頂點(diǎn)SKIPIF1<0為坐標(biāo)原點(diǎn),建立如圖2所示的平面直角坐標(biāo)系SKIPIF1<0,則該拋物線的方程為(
)
A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由題意,結(jié)合圖形可知,SKIPIF1<0,由于該拋物線開口向右,可設(shè)SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,于是SKIPIF1<0.故選:B4.(2023春·湖北·高二十堰一中校聯(lián)考期中)已知SKIPIF1<0的頂點(diǎn)都在拋物線SKIPIF1<0上,且SKIPIF1<0的重心為拋物線的焦點(diǎn)F,則SKIPIF1<0(
)A.3 B.6 C.9 D.12【答案】B【詳解】由題意得SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0點(diǎn)是SKIPIF1<0的重心,SKIPIF1<0,SKIPIF1<0,根據(jù)拋物線的定義可得SKIPIF1<0.故選:B.5.(2023春·福建泉州·高二校聯(lián)考期中)拋物線SKIPIF1<0繞其頂點(diǎn)逆時(shí)針旋轉(zhuǎn)SKIPIF1<0之后,得到的圖象正好對(duì)應(yīng)拋物線SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【答案】B【詳解】拋物線SKIPIF1<0即SKIPIF1<0的開口向上,將其繞頂點(diǎn)順時(shí)針方向旋轉(zhuǎn)SKIPIF1<0,得到的拋物線SKIPIF1<0,開口向右,其方程為SKIPIF1<0,則SKIPIF1<0,故選:B.6.(2023春·陜西西安·高二統(tǒng)考期末)已知拋物線SKIPIF1<0的焦點(diǎn)為F,點(diǎn)SKIPIF1<0在C上,則SKIPIF1<0(
)A.7 B.6 C.5 D.4【答案】D【詳解】點(diǎn)SKIPIF1<0在C:SKIPIF1<0上,設(shè)SKIPIF1<0,而拋物線SKIPIF1<0的焦點(diǎn)坐標(biāo)為SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0.故選:D7.(2023·河南鄭州·統(tǒng)考模擬預(yù)測(cè))已知拋物線SKIPIF1<0,F(xiàn)為拋物線的焦點(diǎn),P為拋物線上一點(diǎn),過點(diǎn)P作PQ垂直于拋物線的準(zhǔn)線,垂足為Q,若SKIPIF1<0,則△PFQ的面積為(
)A.4 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】拋物線的準(zhǔn)線方程為y=-1,焦點(diǎn)為SKIPIF1<0,設(shè)點(diǎn)P的坐標(biāo)為SKIPIF1<0,則點(diǎn)Q的坐標(biāo)為SKIPIF1<0,SKIPIF1<0,由拋物線的定義知SKIPIF1<0,因?yàn)镾KIPIF1<0,所以△PFQ為等邊三角形,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,n=3,所以點(diǎn)P的坐標(biāo)為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:C.
8.(2023·重慶萬州·重慶市萬州第三中學(xué)??寄M預(yù)測(cè))過拋物線SKIPIF1<0的焦點(diǎn)SKIPIF1<0,作傾斜角為SKIPIF1<0的直線SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,SKIPIF1<0兩點(diǎn),交SKIPIF1<0的準(zhǔn)線于點(diǎn)SKIPIF1<0,若SKIPIF1<0(SKIPIF1<0為坐標(biāo)原點(diǎn)),則線段SKIPIF1<0的長(zhǎng)度為(
)A.8 B.16 C.24 D.32【答案】D【詳解】拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0,
直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0可得SKIPIF1<0,即點(diǎn)SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0,拋物線SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,SKIPIF1<0,聯(lián)立SKIPIF1<0可得SKIPIF1<0,由韋達(dá)定理可得SKIPIF1<0,則SKIPIF1<0故選:D二、多選題9.(2023秋·江蘇鹽城·高二鹽城市伍佑中學(xué)??计谀┫铝姓f法中,正確的有(
)A.過點(diǎn)SKIPIF1<0并且傾斜角為0°的直線方程為SKIPIF1<0B.雙曲線SKIPIF1<0的漸近線方程為SKIPIF1<0C.點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0的對(duì)稱點(diǎn)坐標(biāo)為SKIPIF1<0D.拋物線SKIPIF1<0的準(zhǔn)線方程是SKIPIF1<0【答案】BC【詳解】對(duì)A,過點(diǎn)SKIPIF1<0并且傾斜角為0°的直線方程為SKIPIF1<0,故錯(cuò)誤;對(duì)B,雙曲線SKIPIF1<0的漸近線方程為SKIPIF1<0,故正確;對(duì)C,設(shè)點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0的對(duì)稱點(diǎn)坐標(biāo)為SKIPIF1<0,則由SKIPIF1<0解得SKIPIF1<0,故正確;對(duì)D,拋物線SKIPIF1<0,SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0,故錯(cuò)誤.故選:BC10.(2023春·廣西·高二校聯(lián)考期中)已知雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,拋物線SKIPIF1<0的焦點(diǎn)與雙曲線C的一個(gè)焦點(diǎn)重合,點(diǎn)P是這兩條曲線的一個(gè)公共點(diǎn),則下列說法正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0的周長(zhǎng)為16C.SKIPIF1<0的面積為SKIPIF1<0 D.SKIPIF1<0【答案】AB【詳解】由已知,雙曲線右焦點(diǎn)SKIPIF1<0,即SKIPIF1<0,故A項(xiàng)正確.且拋物線方程為SKIPIF1<0.對(duì)于B項(xiàng),聯(lián)立雙曲線與拋物線的方程SKIPIF1<0,整理可得.SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去負(fù)值),所以SKIPIF1<0,代入SKIPIF1<0可得,SKIPIF1<0.設(shè)SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的周長(zhǎng)為16,故B項(xiàng)正確;對(duì)于C項(xiàng),易知SKIPIF1<0,故C項(xiàng)錯(cuò)誤;對(duì)于D項(xiàng),由余弦定理可得,SKIPIF1<0,故D項(xiàng)錯(cuò)誤.故選:AB
三、填空題11.(2023秋·高二課時(shí)練習(xí))點(diǎn)SKIPIF1<0到拋物線SKIPIF1<0的準(zhǔn)線的距離為6,那么拋物線的方程是.【答案】SKIPIF1<0【詳解】當(dāng)SKIPIF1<0時(shí),準(zhǔn)線SKIPIF1<0,由已知得SKIPIF1<0,所以SKIPIF1<0,所以拋物線方程為SKIPIF1<0.故答案為:SKIPIF1<0.12.(2023春·江蘇南京·高二南京市江寧高級(jí)中學(xué)校聯(lián)考期末)已知拋物線C:SKIPIF1<0的焦點(diǎn)為F,準(zhǔn)線為SKIPIF1<0,經(jīng)過點(diǎn)F的直線與拋物線C相交A,B兩點(diǎn),SKIPIF1<0與x軸相交于點(diǎn)M,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.【答案】4【詳解】
由題意易知SKIPIF1<0,可設(shè)SKIPIF1<0,由SKIPIF1<0,可得Q為AM中點(diǎn),則SKIPIF1<0,又由SKIPIF1<0可得:SKIPIF1<0,即SKIPIF1<0,由題意可知直線AB、BM的斜率存在,故SKIPIF1<0,聯(lián)立拋物線與直線AB可得SKIPIF1<0所以有SKIPIF1<0由拋物線定義得SKIPIF1<0,故答案為:4四、解答題13.(2023春·四川遂寧·高二統(tǒng)考期末)分別求適合下列條件的方程:(1)長(zhǎng)軸長(zhǎng)為10,焦距為4的橢圓標(biāo)準(zhǔn)方程;(2)經(jīng)過點(diǎn)SKIPIF1<0的拋物線的標(biāo)準(zhǔn)方程.【答案】(1)SKIPIF1<0或SKIPIF1<0(2)SKIPIF1<0或SKIPIF1<0【詳解】(1)設(shè)橢圓的長(zhǎng)軸長(zhǎng)為SKIPIF1<0,焦距為SKIPIF1<0由條件可得SKIPIF1<0.所以SKIPIF1<0.所以SKIPIF1<0,當(dāng)橢圓的焦點(diǎn)在SKIPIF1<0軸上時(shí),標(biāo)準(zhǔn)方程為SKIPIF1<0;當(dāng)橢圓的焦點(diǎn)在SKIPIF1<0軸上時(shí),標(biāo)準(zhǔn)方程為SKIPIF1<0.(2)當(dāng)拋物線的焦點(diǎn)在SKIPIF1<0軸上時(shí),可設(shè)所求拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0,將點(diǎn)SKIPIF1<0的坐標(biāo)代入拋物線的標(biāo)準(zhǔn)方程得SKIPIF1<0,此時(shí),所求拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0;當(dāng)拋物線的焦點(diǎn)在SKIPIF1<0軸上時(shí),可設(shè)所求拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0,將點(diǎn)SKIPIF1<0的坐標(biāo)代入拋物線的標(biāo)準(zhǔn)方程得SKIPIF1<0,解得SKIPIF1<0,此時(shí),所求拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0.綜上所述,所求拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0或SKIPIF1<0.14.(2023春·四川成都·高二??茧A段練習(xí))動(dòng)點(diǎn)SKIPIF1<0與定點(diǎn)SKIPIF1<0的距離等于點(diǎn)P到直線SKIPIF1<0的距離,設(shè)動(dòng)點(diǎn)P的軌跡為曲線SKIPIF1<0.(1)求曲線SKIPIF1<0的方程;(2)經(jīng)過定點(diǎn)SKIPIF1<0直線SKIPIF1<0與曲線SKIPIF1<0交于SKIPIF1<0兩點(diǎn),且點(diǎn)M是線段AB的中點(diǎn),求直線SKIPIF1<0的方程.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)根據(jù)拋物線的定義可知,動(dòng)點(diǎn)P的軌跡為拋物線,且該拋物線以SKIPIF1<0為焦點(diǎn),所以SKIPIF1<0所以SKIPIF1<0,所以曲線SKIPIF1<0的方程為SKIPIF1<0.(2)若直線SKIPIF1<0垂直于SKIPIF1<0軸,則AB的中點(diǎn)在SKIPIF1<0軸上,不滿足題意,若直線SKIPIF1<0不垂直于SKIPIF1<0軸,設(shè)SKIPIF1<0,且SKIPIF1<0,因?yàn)镾KIP
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電子產(chǎn)品物流合同要點(diǎn)分析
- 2025年度辦公室綠植養(yǎng)護(hù)與室內(nèi)環(huán)境美化合同
- 房屋租賃合同公文
- 企業(yè)人才測(cè)評(píng)及職業(yè)發(fā)展規(guī)劃支持方案設(shè)計(jì)
- 云計(jì)算服務(wù)配置與管理手冊(cè)
- 解決方案設(shè)計(jì)與實(shí)施指南
- 設(shè)計(jì)服務(wù)合同書
- 企業(yè)信息化解決方案操作手冊(cè)
- 建設(shè)工程施工分包委托協(xié)議書
- 車床購(gòu)買合同樣本
- 航天器用j30jh系列微型矩形電連接器
- 工程量清單及招標(biāo)控制價(jià)編制方案
- 納龍心電說明書
- 2023湖北成人學(xué)位英語(yǔ)考試真題及答案1
- 《大數(shù)據(jù)金融》教學(xué)大綱(第六學(xué)期)附課程考核標(biāo)準(zhǔn)
- 物業(yè)管理企業(yè)用工風(fēng)險(xiǎn)與防范對(duì)策
- 拜耳法氧化鋁生產(chǎn)工藝流程框圖
- 零售藥店處方藥銷售自查整改報(bào)告word(范文)
- 叉車日常維護(hù)保養(yǎng)檢查記錄表
- 心源性休克的護(hù)理.ppt課件
- 精品解析:2022年黑龍江省哈爾濱市中考語(yǔ)文試題(原卷版)
評(píng)論
0/150
提交評(píng)論