小學六年級數(shù)學應(yīng)用題分類(答案及詳解)_第1頁
小學六年級數(shù)學應(yīng)用題分類(答案及詳解)_第2頁
小學六年級數(shù)學應(yīng)用題分類(答案及詳解)_第3頁
小學六年級數(shù)學應(yīng)用題分類(答案及詳解)_第4頁
小學六年級數(shù)學應(yīng)用題分類(答案及詳解)_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

小學六年級數(shù)學應(yīng)用題分類(答案及詳解)公約公倍問題需要用公約數(shù)、公倍數(shù)來解答的應(yīng)用題叫做公約數(shù)、公倍數(shù)問題?!緮?shù)量關(guān)系】絕大多數(shù)要用最大公約數(shù)、最小公倍數(shù)來解答?!窘忸}思路和方法】先確定題目中要用最大公約數(shù)或者最小公倍數(shù),再求出答案。最大公約數(shù)和最小公倍數(shù)的求法,最常用的是“短除法”。例1、一張硬紙板長60厘米,寬56厘米,現(xiàn)在需要把它剪成若干個大小相同的最大的正方形,不許有剩余。問正方形的邊長是多少?解:硬紙板的長和寬的最大公約數(shù)就是所求的邊長。60和56的最大公約數(shù)是4。答:正方形的邊長是4厘米。例2、甲、乙、丙三輛汽車在環(huán)形馬路上同向行駛,甲車行一周要36分鐘,乙車行一周要30分鐘,丙車行一周要48分鐘,三輛汽車同時從同一個起點出發(fā),問至少要多少時間這三輛汽車才能同時又在起點相遇?解:要求多少時間才能在同一起點相遇,這個時間必定同時是36、30、48的倍數(shù)。因為問至少要多少時間,所以應(yīng)是36、30、48的最小公倍數(shù)。36、30、48的最小公倍數(shù)是720。答:至少要720分鐘(即12小時)這三輛汽車才能同時又在起點相遇。例3、一個四邊形廣場,邊長分別為60米,72米,96米,84米,現(xiàn)要在四角和四邊植樹,若四邊上每兩棵樹間距相等,至少要植多少棵樹?解:相鄰兩樹的間距應(yīng)是60、72、96、84的公約數(shù),要使植樹的棵數(shù)盡量少,須使相鄰兩樹的間距盡量大,那么這個相等的間距應(yīng)是60、72、96、84這幾個數(shù)的最大公約數(shù)12。所以,至少應(yīng)植樹(60+72+96+84)÷12=26(棵)答:至少要植26棵樹。例4、一盒圍棋子,4個4個地數(shù)多1個,5個5個地數(shù)多1個,6個6個地數(shù)還多1個。又知棋子總數(shù)在150到200之間,求棋子總數(shù)。解:如果從總數(shù)中取出1個,余下的總數(shù)便是4、5、6的公倍數(shù)。因為4、5、6的最小公倍數(shù)是60,又知棋子總數(shù)在150到200之間,所以這個總數(shù)為60×3+1=181(個)答:棋子的總數(shù)是181個。行船問題行船問題也就是與航行有關(guān)的問題。解答這類問題要弄清船速與水速,船速是船只本身航行的速度,也就是船只在靜水中航行的速度;水速是水流的速度,船只順水航行的速度是船速與水速之和;船只逆水航行的速度是船速與水速之差?!緮?shù)量關(guān)系】(順水速度+逆水速度)÷2=船速(順水速度-逆水速度)÷2=水速順水速=船速×2-逆水速=逆水速+水速×2逆水速=船速×2-順水速=順水速-水速×2【解題思路和方法】大多數(shù)情況可以直接利用數(shù)量關(guān)系的公式。例1、一只船順水行320千米需用8小時,水流速度為每小時15千米,這只船逆水行這段路程需用幾小時?解:由條件知,順水速=船速+水速=320÷8,而水速為每小時15千米,所以,船速為每小時320÷8-15=25(千米)船的逆水速為25-15=10(千米)船逆水行這段路程的時間為320÷10=32(小時)答:這只船逆水行這段路程需用32小時。例2、甲船逆水行360千米需18小時,返回原地需10小時;乙船逆水行同樣一段距離需15小時,返回原地需多少時間?解:由題意得甲船速+水速=360÷10=36甲船速-水速=360÷18=20可見(36-20)相當于水速的2倍,所以,水速為每小時(36-20)÷2=8(千米)又因為,乙船速-水速=360÷15,所以,乙船速為360÷15+8=32(千米)乙船順水速為32+8=40(千米)所以,乙船順水航行360千米需要360÷40=9(小時)答:乙船返回原地需要9小時。例3、一架飛機飛行在兩個城市之間,飛機的速度是每小時576千米,風速為每小時24千米,飛機逆風飛行3小時到達,順風飛回需要幾小時?解:這道題可以按照流水問題來解答。(1)兩城相距多少千米?(576-24)×3=1656(千米)(2)順風飛回需要多少小時?1656÷(576+24)=2。76(小時)列成綜合算式[(576-24)×3]÷(576+24)=2.76(小時)答:飛機順風飛回需要2.76小時。工程問題工程問題主要研究工作量、工作效率和工作時間三者之間的關(guān)系。這類問題在已知條件中,常常不給出工作量的具體數(shù)量,只提出“一項工程”、“一塊土地”、“一條水渠”、“一件工作”等,在解題時,常常用單位“1”表示工作總量?!緮?shù)量關(guān)系】解答工程問題的關(guān)鍵是把工作總量看作“1”,這樣,工作效率就是工作時間的倒數(shù)(它表示單位時間內(nèi)完成工作總量的幾分之幾),進而就可以根據(jù)工作量、工作效率、工作時間三者之間的關(guān)系列出算式。工作量=工作效率×工作時間工作時間=工作量÷工作效率工作時間=總工作量÷(甲工作效率+乙工作效率)按比例分配問題所謂按比例分配,就是把一個數(shù)按照一定的比分成若干份。這類題的已知條件一般有兩種形式:一是用比或連比的形式反映各部分占總數(shù)量的份數(shù),另一種是直接給出份數(shù)?!緮?shù)量關(guān)系】從條件看,已知總量和幾個部分量的比;從問題看,求幾個部分量各是多少??偡輸?shù)=比的前后項之和【解題思路和方法】先把各部分量的比轉(zhuǎn)化為各占總量的幾分之幾,把比的前后項相加求出總份數(shù),再求各部分占總量的幾分之幾(以總份數(shù)作分母,比的前后項分別作分子),再按照求一個數(shù)的幾分之幾是多少的計算方法,分別求出各部分量的值。例1、學校把植樹560棵的任務(wù)按人數(shù)分配給五年級三個班,已知一班有47人,二班有48人,三班有45人,三個班各植樹多少棵?解:總份數(shù)為47+48+45=140一班植樹560×47/140=188(棵)二班植樹560×48/140=192(棵)三班植樹560×45/140=180(棵)答:一、二、三班分別植樹188棵、192棵、180棵。例2、用60厘米長的鐵絲圍成一個三角形,三角形三條邊的比是3∶4∶5。三條邊的長各是多少厘米?解:3+4+5=1260×3/12=15(厘米)60×4/12=20(厘米)60×5/12=25(厘米)答:三角形三條邊的長分別是15厘米、20厘米、25厘米。例3、從前有個牧民,臨死前留下遺言,要把17只羊分給三個兒子,大兒子分總數(shù)的1/2,二兒子分總數(shù)的1/3,三兒子分總數(shù)的1/9,并規(guī)定不許把羊宰割分,求三個兒子各分多少只羊。解:如果用總數(shù)乘以分率的方法解答,顯然得不到符合題意的整數(shù)解。如果用按比例分配的方法解,則很容易得到1/2∶1/3∶1/9=9∶6∶29+6+2=1717×9/17=917×6/17=617×2/17=2答:大兒子分得9只羊,二兒子分得6只羊,三兒子分得2只羊。方陣問題將若干人或物依一定條件排成正方形(簡稱方陣),根據(jù)已知條件求總?cè)藬?shù)或總物數(shù),這類問題就叫做方陣問題?!緮?shù)量關(guān)系】(1)方陣每邊人數(shù)與四周人數(shù)的關(guān)系:四周人數(shù)=(每邊人數(shù)-1)×4每邊人數(shù)=四周人數(shù)÷4+1(2)方陣總?cè)藬?shù)的求法:實心方陣:總?cè)藬?shù)=每邊人數(shù)×每邊人數(shù)空心方陣:總?cè)藬?shù)=(外邊人數(shù))?-(內(nèi)邊人數(shù))?內(nèi)邊人數(shù)=外邊人數(shù)-層數(shù)×2(3)若將空心方陣分成四個相等的矩形計算,則:總?cè)藬?shù)=(每邊人數(shù)-層數(shù))×層數(shù)×4【解題思路和方法】方陣問題有實心與空心兩種。實心方陣的求法是以每邊的數(shù)自乘;空心方陣的變化較多,其解答方法應(yīng)根據(jù)具體情況確定。例1、在育才小學的運動會上,進行體操表演的同學排成方陣,每行22人,參加體操表演的同學一共有多少人?解:22×22=484(人)答:參加體操表演的同學一共有484人。例2、有一個3層中空方陣,最外邊一層有10人,求全方陣的人數(shù)。解:10-(10-3×2)=84(人)答:全方陣84人。例3、有一隊學生,排成一個中空方陣,最外層人數(shù)是52人,最內(nèi)層人數(shù)是28人,這隊學生共多少人?解:(1)中空方陣外層每邊人數(shù)=52÷4+1=14(人)(2)中空方陣內(nèi)層每邊人數(shù)=28÷4-1=6(人)(3)中空方陣的總?cè)藬?shù)=14×14-6×6=160(人)答:這隊學生共160人。例4、一堆棋子,排列成正方形,多余4棋子,若正方形縱橫兩個方向各增加一層,則缺少9只棋子,問有棋子多少個?解:(1)縱橫方向各增加一層所需棋子數(shù)=4+9=13(只)(2)縱橫增加一層后正方形每邊棋子數(shù)=(13+1)÷2=7(只)(3)原有棋子數(shù)=7×7-9=40(只)答:棋子有40只。例5、有一個三角形樹林,頂點上有1棵樹,以下每排的樹都比前一排多1棵,最下面一排有5棵樹。這個樹林一共有多少棵樹?解:第一種方法:1+2+3+4+5=15(棵)第二種方法:(5+1)×5÷2=15(棵)答:這個三角形樹林一共有15棵樹。追及問題兩個運動物體在不同地點同時出發(fā)(或者在同一地點而不是同時出發(fā),或者在不同地點又不是同時出發(fā))作同向運動,在后面的,行進速度要快些,在前面的,行進速度較慢些,在一定時間之內(nèi),后面的追上前面的物體。這類應(yīng)用題就叫做追及問題?!緮?shù)量關(guān)系】追及時間=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及時間【解題思路和方法】簡單的題目直接利用公式,復(fù)雜的題目變通后利用公式。例1、好馬每天走120千米,劣馬每天走75千米,劣馬先走12天,好馬幾天能追上劣馬?解:(1)劣馬先走12天能走多少千米?75×12=900(千米)(2)好馬幾天追上劣馬?900÷(120-75)=20(天)列成綜合算式75×12÷(120-75)=900÷45=20(天)答:好馬20天能追上劣馬。例2、小明和小亮在200米環(huán)形跑道上跑步,小明跑一圈用40秒,他們從同一地點同時出發(fā),同向而跑。小明第一次追上小亮時跑了500米,求小亮的速度是每秒多少米。解:小明第一次追上小亮時比小亮多跑一圈,即200米,此時小亮跑了(500-200)米,要知小亮的速度,須知追及時間,即小明跑500米所用的時間。又知小明跑200米用40秒,則跑500米用[40×(500÷200)]秒,所以小亮的速度是(500-200)÷[40×(500÷200)]=300÷100=3(米)答:小亮的速度是每秒3米。例3、我人民解放軍追擊一股逃竄的敵人,敵人在下午16點開始從甲地以每小時10千米的速度逃跑,解放軍在晚上22點接到命令,以每小時30千米的速度開始從乙地追擊。已知甲乙兩地相距60千米,問解放軍幾個小時可以追上敵人?解:敵人逃跑時間與解放軍追擊時間的時差是(22-16)小時,這段時間敵人逃跑的路程是[10×(22-6)]千米,甲乙兩地相距60千米。由此推知追及時間=[10×(22-6)+60]÷(30-10)=220÷20=11(小時)答:解放軍在11小時后可以追上敵人。例4、一輛客車從甲站開往乙站,每小時行48千米;一輛貨車同時從乙站開往甲站,每小時行40千米,兩車在距兩站中點16千米處相遇,求甲乙兩站的距離。解:這道題可以由相遇問題轉(zhuǎn)化為追及問題來解決。從題中可知客車落后于貨車(16×2)千米,客車追上貨車的時間就是前面所說的相遇時間,這個時間為16×2÷(48-40)=4(小時)所以兩站間的距離為(48+40)×4=352(千米)列成綜合算式(48+40)×[16×2÷(48-40)]=88×4=352(千米)答:甲乙兩站的距離是352千米。例5、兄妹二人同時由家上學,哥哥每分鐘走90米,妹妹每分鐘走60米。哥哥到校門口時發(fā)現(xiàn)忘記帶課本,立即沿原路回家去取,行至離校180米處和妹妹相遇。問他們家離學校有多遠?解:要求距離,速度已知,所以關(guān)鍵是求出相遇時間。從題中可知,在相同時間(從出發(fā)到相遇)內(nèi)哥哥比妹妹多走(180×2)米,這是因為哥哥比妹妹每分鐘多走(90-60)米,那么,二人從家出走到相遇所用時間為180×2÷(90-60)=12(分鐘)家離學校的距離為90×12-180=900(米)答:家離學校有900米遠。例6、孫亮打算上課前5分鐘到學校,他以每小時4千米的速度從家步行去學校,當他走了1千米時,發(fā)現(xiàn)手表慢了10分鐘,因此立即跑步前進,到學校恰好準時上課。后來算了一下,如果孫亮從家一開始就跑步,可比原來步行早9分鐘到學校。求孫亮跑步的速度。解:手表慢了10分鐘,就等于晚出發(fā)10分鐘,如果按原速走下去,就要遲到(10-5)分鐘,后段路程跑步恰準時到學校,說明后段路程跑比走少用了(10-5)分鐘。如果從家一開始就跑步,可比步行少9分鐘,由此可知,行1千米,跑步比步行少用[9-(10-5)]分鐘。所以步行1千米所用時間為1÷[9-(10-5)]=0.25(小時)=15(分鐘)跑步1千米所用時間為15-[9-(10-5)]=11(分鐘)跑步速度為每小時1÷11/60=5.5(千米)答:孫亮跑步速度為每小時5.5千米。倍比問題有兩個已知的同類量,其中一個量是另一個量的若干倍,解題時先求出這個倍數(shù),再用倍比的方法算出要求的數(shù),這類應(yīng)用題叫做倍比問題?!緮?shù)量關(guān)系】總量÷一個數(shù)量=倍數(shù)另一個數(shù)量×倍數(shù)=另一總量【解題思路和方法】先求出倍數(shù),再用倍比關(guān)系求出要求的數(shù)。例1、100千克油菜籽可以榨油40千克,現(xiàn)在有油菜籽3700千克,可以榨油多少?解:(1)3700千克是100千克的多少倍?3700÷100=37(倍)(2)可以榨油多少千克?40×37=1480(千克)列成綜合算式40×(3700÷100)=1480(千克)答:可以榨油1480千克。例2、今年植樹節(jié)這天,某小學300名師生共植樹400棵,照這樣計算,全縣48000名師生共植樹多少棵?解:(1)48000名是300名的多少倍?48000÷300=160(倍)(2)共植樹多少棵?400×160=64000(棵)列成綜合算式400×(48000÷300)=64000(棵)答:全縣48000名師生共植樹64000棵。例3、鳳翔縣今年蘋果大豐收,田家莊一戶人家4畝果園收入11111元,照這樣計算,全鄉(xiāng)800畝果園共收入多少元?全縣16000畝果園共收入多少元?解:(1)800畝是4畝的幾倍?800÷4=200(倍)(2)800畝收入多少元?11111×200=2222200(元)(3)16000畝是800畝的幾倍?16000÷800=20(倍)(4)16000畝收入多少元?2222200×20=44444000(元)答:全鄉(xiāng)800畝果園共收入2222200元,全縣16000畝果園共收入44444000元。溶液濃度問題在生產(chǎn)和生活中,我們經(jīng)常會遇到溶液濃度問題。這類問題研究的主要是溶劑(水或其它液體)、溶質(zhì)、溶液、濃度這幾個量的關(guān)系。例如,水是一種溶劑,被溶解的東西叫溶質(zhì),溶解后的混合物叫溶液。溶質(zhì)的量在溶液的量中所占的百分數(shù)叫濃度,也叫百分比濃度?!緮?shù)量關(guān)系】溶液=溶劑+溶質(zhì)濃度=溶質(zhì)÷溶液×100%【解題思路和方法】簡單的題目可直接利用公式,復(fù)雜的題目變通后再利用公式。例1、爺爺有16%的糖水50克,(1)要把它稀釋成10%的糖水,需加水多少克?(2)若要把它變成30%的糖水,需加糖多少克?解:(1)需要加水多少克?50×16%÷10%-50=30(克)(2)需要加糖多少克?50×(1-16%)÷(1-30%)-50=10(克)答:(1)需要加水30克,(2)需要加糖10克。例2、要把30%的糖水與15%的糖水混合,配成25%的糖水600克,需要30%和15%的糖水各多少克?解:假設(shè)全用30%的糖水溶液,那么含糖量就會多出600×(30%-25%)=30(克)這是因為30%的糖水多用了。于是,我們設(shè)想在保證總重量600克不變的情況下,用15%的溶液來“換掉”一部分30%的溶液。這樣,每“換掉”100克,就會減少糖100×(30%-15%)=15(克)所以需要“換掉”30%的溶液(即“換上”15%的溶液)100×(30÷15)=200(克)由此可知,需要15%的溶液200克。需要30%的溶液600-200=400(克)答:需要15%的糖水溶液200克,需要30%的糖水400克。最值問題科學的發(fā)展觀認為,國民經(jīng)濟的發(fā)展既要講求效率,又要節(jié)約能源,要少花錢多辦事,辦好事,以最小的代價取得最大的效益。這類應(yīng)用題叫做最值問題?!緮?shù)量關(guān)系】一般是求最大值或最小值?!窘忸}思路和方法】按照題目的要求,求出最大值或最小值。例1、在火爐上烤餅,餅的兩面都要烤,每烤一面需要3分鐘,爐上只能同時放兩塊餅,現(xiàn)在需要烤三塊餅,最少需要多少分鐘?解:先將兩塊餅同時放上烤,3分鐘后都熟了一面,這時將第一塊餅取出,放入第三塊餅,翻過第二塊餅。再過3分鐘取出熟了的第二塊餅,翻過第三塊餅,又放入第一塊餅烤另一面,再烤3分鐘即可。這樣做,用的時間最少,為9分鐘。答:最少需要9分鐘。例2、在一條公路上有五個卸煤場,每相鄰兩個之間的距離都是10千米,已知1號煤場存煤100噸,2號煤場存煤200噸,5號煤場存煤400噸,其余兩個煤場是空的?,F(xiàn)在要把所有的煤集中到一個煤場里,每噸煤運1千米花費1元,集中到幾號煤場花費最少?解:我們采用嘗試比較的方法來解答。集中到1號場總費用為1×200×10+1×400×40=18000(元)集中到2號場總費用為1×100×10+1×400×30=13000(元)集中到3號場總費用為1×100×20+1×200×10+1×400×10=12000(元)集中到4號場總費用為1×100×30+1×200×20+1×400×10=11000(元)集中到5號場總費用為1×100×40+1×200×30=10000(元)經(jīng)過比較,顯然,集中到5號煤場費用最少。答:集中到5號煤場費用最少。時鐘問題時鐘問題就是研究鐘面上時針與分針關(guān)系的問題,如兩針重合、兩針垂直、兩針成一線、兩針夾角為60度等。時鐘問題可與追及問題相類比?!緮?shù)量關(guān)系】分針的速度是時針的12倍,二者的速度差為11/12。通常按追及問題來對待,也可以按差倍問題來計算。【解題思路和方法】變通為“追及問題”后可以直接利用公式。例1、從時針指向4點開始,再經(jīng)過多少分鐘時針正好與分針重合?解:鐘面的一周分為60格,分針每分鐘走一格,每小時走60格;時針每小時走5格,每分鐘走5/60=1/12格。每分鐘分針比時針多走(1-1/12)=11/12格。4點整,時針在前,分針在后,兩針相距20格。所以分針追上時針的時間為20÷(1-1/12)≈22(分)答:再經(jīng)過22分鐘時針正好與分針重合。例2、四點和五點之間,時針和分針在什么時候成直角?解:鐘面上有60格,它的1/4是15格,因而兩針成直角的時候相差15格(包括分針在時針的前或后15格兩種情況)。四點整的時候,分針在時針后(5×4)格,如果分針在時針后與它成直角,那么分針就要比時針多走(5×4-15)格,如果分針在時針前與它成直角,那么分針就要比時針多走(5×4+15)格。再根據(jù)1分鐘分針比時針多走(1-1/12)格就可以求出二針成直角的時間。(5×4-15)÷(1-1/12)≈6(分)(5×4+15)÷(1-1/12)≈38(分)答:4點06分及4點38分時兩針成直角。例3、六點與七點之間什么時候時針與分針重合?解:六點整的時候,分針在時針后(5×6)格,分針要與時針重合,就得追上時針。這實際上是一個追及問題。(5×6)÷(1-1/12)≈33(分)答:6點33分的時候分針與時針重合。列車問題這是與列車行駛有關(guān)的一些問題,解答時要注意列車車身的長度?!緮?shù)量關(guān)系】火車過橋:過橋時間=(車長+橋長)÷車速火車追及:追及時間=(甲車長+乙車長+距離)÷(甲車速-乙車速)火車相遇:相遇時間=(甲車長+乙車長+距離)÷(甲車速+乙車速)【解題思路和方法】大多數(shù)情況可以直接利用數(shù)量關(guān)系的公式。例1、一座大橋長2400米,一列火車以每分鐘900米的速度通過大橋,從車頭開上橋到車尾離開橋共需要3分鐘。這列火車長多少米?解:火車3分鐘所行的路程,就是橋長與火車車身長度的和。(1)火車3分鐘行多少米?900×3=2700(米)(2)這列火車長多少米?2700-2400=300(米)列成綜合算式900×3-2400=300(米)答:這列火車長300米。例2、一列長200米的火車以每秒8米的速度通過一座大橋,用了2分5秒鐘時間,求大橋的長度是多少米?解:火車過橋所用的時間是2分5秒=125秒,所走的路程是(8×125)米,這段路程就是(200米+橋長),所以,橋長為8×125-200=800(米)答:大橋的長度是800米。例3、一列長225米的慢車以每秒17米的速度行駛,一列長140米的快車以每秒22米的速度在后面追趕,求快車從追上到追過慢車需要多長時間?解從追上到追過,快車比慢車要多行(225+140)米,而快車比慢車每秒多行(22-17)米,因此,所求的時間為(225+140)÷(22-17)=73(秒)答:需要73秒。例4、一列長150米的列車以每秒22米的速度行駛,有一個扳道工人以每秒3米的速度迎面走來,那么,火車從工人身旁駛過需要多少時間?解:如果把人看作一列長度為零的火車,原題就相當于火車相遇問題。150÷(22+3)=6(秒)答:火車從工人身旁駛過需要6秒鐘。例5、一列火車穿越一條長2000米的隧道用了88秒,以同樣的速度通過一條長1250米的大橋用了58秒。求這列火車的車速和車身長度各是多少?解:車速和車長都沒有變,但通過隧道和大橋所用的時間不同,是因為隧道比大橋長??芍疖囋?88-58)秒的時間內(nèi)行駛了(2000-1250)米的路程,因此,火車的車速為每秒(2000-1250)÷(88-58)=25(米)進而可知,車長和橋長的和為(25×58)米,因此,車長為25×58-1250=200(米)答:這列火車的車速是每秒25米,車身長200米。年齡問題這類問題是根據(jù)題目的內(nèi)容而得名,它的主要特點是兩人的年齡差不變,但是,兩人年齡之間的倍數(shù)關(guān)系隨著年齡的增長在發(fā)生變化?!緮?shù)量關(guān)系】年齡問題往往與和差、和倍、差倍問題有著密切聯(lián)系,尤其與差倍問題的解題思路是一致的,要緊緊抓住“年齡差不變”這個特點。【解題思路和方法】可以利用“差倍問題”的解題思路和方法。①兩個人的年齡差是不變的;②兩個人的年齡是同時增加或者同時減少的;③兩個人的年齡的倍數(shù)是發(fā)生變化的。常用的計算公式是:成倍時小的年齡=大小年齡之差÷(倍數(shù)-1)幾年前的年齡=小的現(xiàn)年-成倍數(shù)時小的年齡幾年后的年齡=成倍時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論