版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年福建省莆田六中數(shù)學(xué)高三上期末復(fù)習(xí)檢測(cè)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù)滿足(是虛數(shù)單位),則=()A. B. C. D.2.為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計(jì)學(xué)家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時(shí),表示收入完全平等.勞倫茨曲線為折線時(shí),表示收入完全不平等.記區(qū)域?yàn)椴黄降葏^(qū)域,表示其面積,為的面積,將稱為基尼系數(shù).對(duì)于下列說法:①越小,則國民分配越公平;②設(shè)勞倫茨曲線對(duì)應(yīng)的函數(shù)為,則對(duì),均有;③若某國家某年的勞倫茨曲線近似為,則;④若某國家某年的勞倫茨曲線近似為,則.其中正確的是:A.①④ B.②③ C.①③④ D.①②④3.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的值為()A.0 B.1 C. D.4.下列四個(gè)圖象可能是函數(shù)圖象的是()A. B. C. D.5.雙曲線的右焦點(diǎn)為,過點(diǎn)且與軸垂直的直線交兩漸近線于兩點(diǎn),與雙曲線的其中一個(gè)交點(diǎn)為,若,且,則該雙曲線的離心率為()A. B. C. D.6.已知等比數(shù)列的各項(xiàng)均為正數(shù),設(shè)其前n項(xiàng)和,若(),則()A.30 B. C. D.627.若為純虛數(shù),則z=()A. B.6i C. D.208.已知無窮等比數(shù)列的公比為2,且,則()A. B. C. D.9.設(shè)雙曲線的右頂點(diǎn)為,右焦點(diǎn)為,過點(diǎn)作平行的一條漸近線的直線與交于點(diǎn),則的面積為()A. B. C.5 D.610.已知函數(shù)的導(dǎo)函數(shù)為,記,,…,N.若,則()A. B. C. D.11.是邊長(zhǎng)為的等邊三角形,、分別為、的中點(diǎn),沿把折起,使點(diǎn)翻折到點(diǎn)的位置,連接、,當(dāng)四棱錐的外接球的表面積最小時(shí),四棱錐的體積為()A. B. C. D.12.已知函數(shù),若恒成立,則滿足條件的的個(gè)數(shù)為()A.0 B.1 C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知關(guān)于的不等式對(duì)于任意恒成立,則實(shí)數(shù)的取值范圍為_________.14.六位同學(xué)坐在一排,現(xiàn)讓六位同學(xué)重新坐,恰有兩位同學(xué)坐自己原來的位置,則不同的坐法有________種(用數(shù)字回答).15.圓關(guān)于直線的對(duì)稱圓的方程為_____.16.將一顆質(zhì)地均勻的正方體骰子(每個(gè)面上分別寫有數(shù)字1,2,3,4,5,6)先后拋擲2次,觀察向上的點(diǎn)數(shù),則點(diǎn)數(shù)之和是6的的概率是___.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,設(shè)點(diǎn)為橢圓的右焦點(diǎn),圓過且斜率為的直線交圓于兩點(diǎn),交橢圓于點(diǎn)兩點(diǎn),已知當(dāng)時(shí),(1)求橢圓的方程.(2)當(dāng)時(shí),求的面積.18.(12分)平面直角坐標(biāo)系中,曲線:.直線經(jīng)過點(diǎn),且傾斜角為,以為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系.(1)寫出曲線的極坐標(biāo)方程與直線的參數(shù)方程;(2)若直線與曲線相交于,兩點(diǎn),且,求實(shí)數(shù)的值.19.(12分)語音交互是人工智能的方向之一,現(xiàn)在市場(chǎng)上流行多種可實(shí)現(xiàn)語音交互的智能音箱.主要代表有小米公司的“小愛同學(xué)”智能音箱和阿里巴巴的“天貓精靈”智能音箱,它們可以通過語音交互滿足人們的部分需求.某經(jīng)銷商為了了解不同智能音箱與其購買者性別之間的關(guān)聯(lián)程度,從某地區(qū)隨機(jī)抽取了100名購買“小愛同學(xué)”和100名購買“天貓精靈”的人,具體數(shù)據(jù)如下:“小愛同學(xué)”智能音箱“天貓精靈”智能音箱合計(jì)男4560105女554095合計(jì)100100200(1)若該地區(qū)共有13000人購買了“小愛同學(xué)”,有12000人購買了“天貓精靈”,試估計(jì)該地區(qū)購買“小愛同學(xué)”的女性比購買“天貓精靈”的女性多多少人?(2)根據(jù)列聯(lián)表,能否有95%的把握認(rèn)為購買“小愛同學(xué)”、“天貓精靈”與性別有關(guān)?附:0.100.050.0250.010.0050.0012.7063.8415.0246.6357.87910.82820.(12分)在四棱錐中,底面為直角梯形,,,,,,,分別為,的中點(diǎn).(1)求證:.(2)若,求二面角的余弦值.21.(12分)已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).(1)求曲線的直角坐標(biāo)方程與直線的普通方程;(2)已知點(diǎn),直線與曲線交于、兩點(diǎn),求.22.(10分)已知函數(shù)f(x)=x-lnx,g(x)=x2-ax.(1)求函數(shù)f(x)在區(qū)間[t,t+1](t>0)上的最小值m(t);(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函數(shù)h(x)圖像上任意兩點(diǎn),且滿足>1,求實(shí)數(shù)a的取值范圍;(3)若?x∈(0,1],使f(x)≥成立,求實(shí)數(shù)a的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.【詳解】解:由,得,.故選.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.2、A【解析】
對(duì)于①,根據(jù)基尼系數(shù)公式,可得基尼系數(shù)越小,不平等區(qū)域的面積越小,國民分配越公平,所以①正確.對(duì)于②,根據(jù)勞倫茨曲線為一條凹向橫軸的曲線,由圖得,均有,可得,所以②錯(cuò)誤.對(duì)于③,因?yàn)?,所以,所以③錯(cuò)誤.對(duì)于④,因?yàn)?,所以,所以④正確.故選A.3、A【解析】
根據(jù)輸入的值大小關(guān)系,代入程序框圖即可求解.【詳解】輸入,,因?yàn)椋杂沙绦蚩驁D知,輸出的值為.故選:A【點(diǎn)睛】本題考查了對(duì)數(shù)式大小比較,條件程序框圖的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.4、C【解析】
首先求出函數(shù)的定義域,其函數(shù)圖象可由的圖象沿軸向左平移1個(gè)單位而得到,因?yàn)闉槠婧瘮?shù),即可得到函數(shù)圖象關(guān)于對(duì)稱,即可排除A、D,再根據(jù)時(shí)函數(shù)值,排除B,即可得解.【詳解】∵的定義域?yàn)?,其圖象可由的圖象沿軸向左平移1個(gè)單位而得到,∵為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱,∴的圖象關(guān)于點(diǎn)成中心對(duì)稱.可排除A、D項(xiàng).當(dāng)時(shí),,∴B項(xiàng)不正確.故選:C【點(diǎn)睛】本題考查函數(shù)的性質(zhì)與識(shí)圖能力,一般根據(jù)四個(gè)選擇項(xiàng)來判斷對(duì)應(yīng)的函數(shù)性質(zhì),即可排除三個(gè)不符的選項(xiàng),屬于中檔題.5、D【解析】
根據(jù)已知得本題首先求出直線與雙曲線漸近線的交點(diǎn),再利用,求出點(diǎn),因?yàn)辄c(diǎn)在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因?yàn)?,即可得到,故選:D.【點(diǎn)睛】本題主要考查的是雙曲線的簡(jiǎn)單幾何性質(zhì)和向量的坐標(biāo)運(yùn)算,離心率問題關(guān)鍵尋求關(guān)于,,的方程或不等式,由此計(jì)算雙曲線的離心率或范圍,屬于中檔題.6、B【解析】
根據(jù),分別令,結(jié)合等比數(shù)列的通項(xiàng)公式,得到關(guān)于首項(xiàng)和公比的方程組,解方程組求出首項(xiàng)和公式,最后利用等比數(shù)列前n項(xiàng)和公式進(jìn)行求解即可.【詳解】設(shè)等比數(shù)列的公比為,由題意可知中:.由,分別令,可得、,由等比數(shù)列的通項(xiàng)公式可得:,因此.故選:B【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.7、C【解析】
根據(jù)復(fù)數(shù)的乘法運(yùn)算以及純虛數(shù)的概念,可得結(jié)果.【詳解】∵為純虛數(shù),∴且得,此時(shí)故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的概念與運(yùn)算,屬基礎(chǔ)題.8、A【解析】
依據(jù)無窮等比數(shù)列求和公式,先求出首項(xiàng),再求出,利用無窮等比數(shù)列求和公式即可求出結(jié)果?!驹斀狻恳?yàn)闊o窮等比數(shù)列的公比為2,則無窮等比數(shù)列的公比為。由有,,解得,所以,,故選A?!军c(diǎn)睛】本題主要考查無窮等比數(shù)列求和公式的應(yīng)用。9、A【解析】
根據(jù)雙曲線的標(biāo)準(zhǔn)方程求出右頂點(diǎn)、右焦點(diǎn)的坐標(biāo),再求出過點(diǎn)與的一條漸近線的平行的直線方程,通過解方程組求出點(diǎn)的坐標(biāo),最后利用三角形的面積公式進(jìn)行求解即可.【詳解】由雙曲線的標(biāo)準(zhǔn)方程可知中:,因此右頂點(diǎn)的坐標(biāo)為,右焦點(diǎn)的坐標(biāo)為,雙曲線的漸近線方程為:,根據(jù)雙曲線和漸近線的對(duì)稱性不妨設(shè)點(diǎn)作平行的一條漸近線的直線與交于點(diǎn),所以直線的斜率為,因此直線方程為:,因此點(diǎn)的坐標(biāo)是方程組:的解,解得方程組的解為:,即,所以的面積為:.故選:A【點(diǎn)睛】本題考查了雙曲線的漸近線方程的應(yīng)用,考查了兩直線平行的性質(zhì),考查了數(shù)學(xué)運(yùn)算能力.10、D【解析】
通過計(jì)算,可得,最后計(jì)算可得結(jié)果.【詳解】由題可知:所以所以猜想可知:由所以所以故選:D【點(diǎn)睛】本題考查導(dǎo)數(shù)的計(jì)算以及不完全歸納法的應(yīng)用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.11、D【解析】
首先由題意得,當(dāng)梯形的外接圓圓心為四棱錐的外接球球心時(shí),外接球的半徑最小,通過圖形發(fā)現(xiàn),的中點(diǎn)即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進(jìn)而可根據(jù)四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設(shè)為梯形的外接圓圓心,當(dāng)也為四棱錐的外接球球心時(shí),外接球的半徑最小,也就使得外接球的表面積最小,過作的垂線交于點(diǎn),交于點(diǎn),連接,點(diǎn)必在上,、分別為、的中點(diǎn),則必有,,即為直角三角形.對(duì)于等腰梯形,如圖:因?yàn)槭堑冗吶切危?、、分別為、、的中點(diǎn),必有,所以點(diǎn)為等腰梯形的外接圓圓心,即點(diǎn)與點(diǎn)重合,如圖,,所以四棱錐底面的高為,.故選:D.【點(diǎn)睛】本題考查四棱錐的外接球及體積問題,關(guān)鍵是要找到外接球球心的位置,這個(gè)是一個(gè)難點(diǎn),考查了學(xué)生空間想象能力和分析能力,是一道難度較大的題目.12、C【解析】
由不等式恒成立問題分類討論:①當(dāng),②當(dāng),③當(dāng),考查方程的解的個(gè)數(shù),綜合①②③得解.【詳解】①當(dāng)時(shí),,滿足題意,②當(dāng)時(shí),,,,,故不恒成立,③當(dāng)時(shí),設(shè),,令,得,,得,下面考查方程的解的個(gè)數(shù),設(shè)(a),則(a)由導(dǎo)數(shù)的應(yīng)用可得:(a)在為減函數(shù),在,為增函數(shù),則(a),即有一解,又,均為增函數(shù),所以存在1個(gè)使得成立,綜合①②③得:滿足條件的的個(gè)數(shù)是2個(gè),故選:.【點(diǎn)睛】本題考查了不等式恒成立問題及利用導(dǎo)數(shù)研究函數(shù)的解得個(gè)數(shù),重點(diǎn)考查了分類討論的數(shù)學(xué)思想方法,屬難度較大的題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先將不等式對(duì)于任意恒成立,轉(zhuǎn)化為任意恒成立,設(shè),求出在內(nèi)的最小值,即可求出的取值范圍.【詳解】解:由題可知,不等式對(duì)于任意恒成立,即,又因?yàn)?,,?duì)任意恒成立,設(shè),其中,由不等式,可得:,則,當(dāng)時(shí)等號(hào)成立,又因?yàn)樵趦?nèi)有解,,則,即:,所以實(shí)數(shù)的取值范圍:.故答案為:.【點(diǎn)睛】本題考查不等式恒成立問題,利用分離參數(shù)法和構(gòu)造函數(shù),通過求新函數(shù)的最值求出參數(shù)范圍,考查轉(zhuǎn)化思想和計(jì)算能力.14、135【解析】
根據(jù)題意先確定2個(gè)人位置不變,共有種選擇,再確定4個(gè)人坐4個(gè)位置,但是不能坐原來的位置,計(jì)算得到答案.【詳解】根據(jù)題意先確定2個(gè)人位置不變,共有種選擇.再確定4個(gè)人坐4個(gè)位置,但是不能坐原來的位置,共有種選擇,故不同的坐法有.故答案為:.【點(diǎn)睛】本題考查了分步乘法原理,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.15、【解析】
求出圓心關(guān)于直線的對(duì)稱點(diǎn),即可得解.【詳解】的圓心為,關(guān)于對(duì)稱點(diǎn)設(shè)為,則有:,解得,所以對(duì)稱后的圓心為,故所求圓的方程為.故答案為:【點(diǎn)睛】此題考查求圓關(guān)于直線的對(duì)稱圓方程,關(guān)鍵在于準(zhǔn)確求出圓心關(guān)于直線的對(duì)稱點(diǎn)坐標(biāo).16、【解析】
先求出基本事件總數(shù)6×6=36,再由列舉法求出“點(diǎn)數(shù)之和等于6”包含的基本事件的個(gè)數(shù),由此能求出“點(diǎn)數(shù)之和等于6”的概率.【詳解】基本事件總數(shù)6×6=36,點(diǎn)數(shù)之和是6包括共5種情況,則所求概率是.故答案為【點(diǎn)睛】本題考查古典概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意列舉法的合理運(yùn)用.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)先求出圓心到直線的距離為,再根據(jù)得到,解之即得a的值,再根據(jù)c=1求出b的值得到橢圓的方程.(2)先求出,,再求得的面積.【詳解】(1)因?yàn)橹本€過點(diǎn),且斜率.所以直線的方程為,即,所以圓心到直線的距離為,又因?yàn)?,圓的半徑為,所以,即,解之得,或(舍去).所以,所以所示橢圓的方程為.(2)由(1)得,橢圓的右準(zhǔn)線方程為,離心率,則點(diǎn)到右準(zhǔn)線的距離為,所以,即,把代入橢圓方程得,,因?yàn)橹本€的斜率,所以,因?yàn)橹本€經(jīng)過和,所以直線的方程為,聯(lián)立方程組得,解得或,所以,所以的面積.【點(diǎn)睛】本題主要考查直線和圓、橢圓的位置關(guān)系,考查橢圓的方程的求法,考查三角形面積的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理計(jì)算能力.18、(Ⅰ)(t為參數(shù));(Ⅱ)或或.【解析】
試題分析:本題主要考查極坐標(biāo)方程、參數(shù)方程與直角方程的相互轉(zhuǎn)化、直線與拋物線的位置關(guān)系等基礎(chǔ)知識(shí),考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問,用,化簡(jiǎn)表達(dá)式,得到曲線的極坐標(biāo)方程,由已知點(diǎn)和傾斜角得到直線的參數(shù)方程;第二問,直線方程與曲線方程聯(lián)立,消參,解出的值.試題解析:(1)即,.(2),符合題意考點(diǎn):本題主要考查:1.極坐標(biāo)方程,參數(shù)方程與直角方程的相互轉(zhuǎn)化;2.直線與拋物線的位置關(guān)系.19、(1)多2350人;(2)有95%的把握認(rèn)為購買“小愛同學(xué)”、“天貓精靈”與性別有關(guān).【解析】
(1)根據(jù)題意,知100人中購買“小愛同學(xué)”的女性有55人,購買“天貓精靈”的女性有40人,即可估計(jì)該地區(qū)購買“小愛同學(xué)”的女性人數(shù)和購買“天貓精靈”的女性的人數(shù),即可求得答案;(2)根據(jù)列聯(lián)表和給出的公式,求出,與臨界值比較,即可得出結(jié)論.【詳解】解:(1)由題可知,100人中購買“小愛同學(xué)”的女性有55人,購買“天貓精靈”的女性有40人,由于地區(qū)共有13000人購買了“小愛同學(xué)”,有12000人購買了“天貓精靈”,估計(jì)購買“小愛同學(xué)”的女性有人.估計(jì)購買“天貓精靈”的女性有人.則,∴估計(jì)該地區(qū)購買“小愛同學(xué)”的女性比購買“天貓精靈”的女性多2350人.(2)由題可知,,∴有95%的把握認(rèn)為購買“小愛同學(xué)”、“天貓精靈”與性別有關(guān).【點(diǎn)睛】本題考查隨機(jī)抽樣估計(jì)總體以及獨(dú)立性檢驗(yàn)的應(yīng)用,考查計(jì)算能力.20、(1)見解析(2)【解析】
(1)由已知可證明平面,從而得證面面垂直,再由,得線面垂直,從而得,由直角三角形得結(jié)論;(2)以為軸建立空間直角坐標(biāo)系,用空間向量法示二面角.【詳解】(1)證明:連接,,.,,平面.平面,平面平面.,為的中點(diǎn),.平面平面,平面.平面,.為斜邊的中點(diǎn),,(2),由(1)可知,為等腰直角三角形,則.以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則,,,,則,記平面的法向量為由得到,取,可得,則.易知平面的法向量為.記二面角的平面角為,且由圖可知為銳角,則,所以二面角的余弦值為.【點(diǎn)睛】本題考查用面面垂直的性質(zhì)定理證明線面垂直,從而得線線垂直,考查用空間向量法求二面角.在立體幾何中求異面直線成的角、直線與平面所成的角、二面角等空間角時(shí),可以建立空間直角坐標(biāo)系,用空間向量法求解空間角,可避免空間角的作證過程,通過計(jì)算求解.21、(1).(2)【解析】
(1)根據(jù)極坐標(biāo)與直角坐標(biāo)互化公式,以及消去參數(shù),即可求解;(2)設(shè)兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為,,將直線的參數(shù)方程代入曲線方程,結(jié)合根與系數(shù)的關(guān)系,即可求解.【詳解】(1)對(duì)于曲線的極坐標(biāo)方程為,可得,又由,可得,即,所以曲線的普通方程為.由直線的參數(shù)方程為(為參數(shù)),消去參數(shù)可得,即直線的方程為,即.(2)設(shè)兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為,,將直線的參數(shù)方程(為參數(shù))代入曲線中,可得.化簡(jiǎn)得:,則.所以.【點(diǎn)睛】本題主要考查了參數(shù)方程與普通方程,極坐標(biāo)方程與直角坐標(biāo)方程的互化,以及直線的參數(shù)方程的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.22、(1)m(t)=(2)a≤2-2.(3)a≤2-2.【解析】
(1)是研究在動(dòng)區(qū)間上的最值問題,這類問題的研究方法就是通過討論函數(shù)的極值點(diǎn)與所研究的區(qū)間的大小關(guān)系來進(jìn)行求解.(2)注意到函數(shù)h(x)的圖像上任意不同兩點(diǎn)A,B連線的斜率總大于1,等價(jià)于h(x1)-h(huán)(x2)<x1-x2(x1<x2)恒成立,從而構(gòu)造函數(shù)F(x)=h(x)-x在(0,+∞)上單調(diào)遞增,進(jìn)而等價(jià)于F′(x)≥0在(0,+∞)上恒成立來加以研究.(3)用處理恒成立問題來
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 租賃廠房合同協(xié)議
- 招標(biāo)文件評(píng)審的實(shí)踐操作與評(píng)審標(biāo)準(zhǔn)
- 家庭護(hù)理家政工雇傭合同
- 土地居間合作合同書
- 現(xiàn)金贖樓服務(wù)合同還款還款監(jiān)管政策
- 借款保證協(xié)議模板
- 個(gè)人社會(huì)救助借款合同范本
- 河砂礫石采購協(xié)議
- 林業(yè)采伐合作合同
- 抗洪項(xiàng)目論證招標(biāo)
- 《汽車專業(yè)英語》期末試卷附答案第1套
- 2024年廉潔經(jīng)營承諾書2篇
- 《如何培養(yǎng)良好心態(tài)》課件
- 《中醫(yī)養(yǎng)生腎》課件
- 2024年二級(jí)建造師考試建筑工程管理與實(shí)務(wù)試題及解答參考
- 生產(chǎn)車間關(guān)鍵崗位培訓(xùn)
- 鄉(xiāng)鎮(zhèn)(街道)和村(社區(qū))應(yīng)急預(yù)案編制管理百問百答
- 醫(yī)院培訓(xùn)課件:《乳腺癌解讀》
- 中國高血壓防治指南(2024年修訂版)核心要點(diǎn)解讀
- 湖州師范學(xué)院《中學(xué)歷史教學(xué)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年人教版八年級(jí)語文上冊(cè)期末考試卷(附答案)
評(píng)論
0/150
提交評(píng)論