版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
甘肅省重點名校2024學(xué)年中考數(shù)學(xué)模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,兩張完全相同的正六邊形紙片邊長為重合在一起,下面一張保持不動,將上面一張紙片沿水平方向向左平移a個單位長度,則空白部分與陰影部分面積之比是A.5:2 B.3:2 C.3:1 D.2:12.如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.213.如圖,AB∥CD,F(xiàn)H平分∠BFG,∠EFB=58°,則下列說法錯誤的是()A.∠EGD=58° B.GF=GH C.∠FHG=61° D.FG=FH4.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A、B兩點,與y軸交于點C,對稱軸為直線x=-1,點B的坐標為(1,0),則下列結(jié)論:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正確的結(jié)論有()個.A.3 B.4 C.2 D.15.如圖,已知直線a∥b∥c,直線m,n與a,b,c分別交于點A,C,E,B,D,F(xiàn),若AC=4,CE=6,BD=3,則DF的值是()A.4 B.4.5 C.5 D.5.56.若正比例函數(shù)y=3x的圖象經(jīng)過A(﹣2,y1),B(﹣1,y2)兩點,則y1與y2的大小關(guān)系為()A.y1<y2 B.y1>y2 C.y1≤y2 D.y1≥y27.已知一個等腰三角形的兩邊長分別是2和4,則該等腰三角形的周長為()A.8或10 B.8 C.10 D.6或128.如圖,甲從A點出發(fā)向北偏東70°方向走到點B,乙從點A出發(fā)向南偏西15°方向走到點C,則∠BAC的度數(shù)是()A.85° B.105° C.125° D.160°9.如圖,在Rt△ABC中,∠ACB=90°,AC=2,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將繞點D旋轉(zhuǎn)180°后點B與點A恰好重合,則圖中陰影部分的面積為()A. B. C. D.10.2017年,太原市GDP突破三千億元大關(guān),達到3382億元,經(jīng)濟總量比上年增長了426.58億元,達到近三年來增量的最高水平,數(shù)據(jù)“3382億元”用科學(xué)記數(shù)法表示為()A.3382×108元B.3.382×108元C.338.2×109元D.3.382×1011元二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平面直角坐標系中,點A(0,6),點B在x軸的負半軸上,將線段AB繞點A逆時針旋轉(zhuǎn)90°至AB',點M是線段AB'的中點,若反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過點B'、M,則k=_____.12.如圖,點A的坐標為(3,),點B的坐標為(6,0),將△AOB繞點B按順時針方向旋轉(zhuǎn)一定的角度后得到△A′O′B,點A的對應(yīng)點A′在x軸上,則點O′的坐標為_____.13.化簡:=.14.下列說法正確的是_____.(請直接填寫序號)①“若a>b,則>.”是真命題.②六邊形的內(nèi)角和是其外角和的2倍.③函數(shù)y=的自變量的取值范圍是x≥﹣1.④三角形的中位線平行于第三邊,并且等于第三邊的一半.⑤正方形既是軸對稱圖形,又是中心對稱圖形.15.若xay與3x2yb是同類項,則ab的值為_____.16.如圖,路燈距離地面6,身高1.5的小明站在距離燈的底部(點)15的處,則小明的影子的長為________.三、解答題(共8題,共72分)17.(8分)某景區(qū)商店銷售一種紀念品,每件的進貨價為40元.經(jīng)市場調(diào)研,當該紀念品每件的銷售價為50元時,每天可銷售200件;當每件的銷售價每增加1元,每天的銷售數(shù)量將減少10件.當每件的銷售價為52元時,該紀念品每天的銷售數(shù)量為件;當每件的銷售價x為多少時,銷售該紀念品每天獲得的利潤y最大?并求出最大利潤.18.(8分)如圖,分別延長?ABCD的邊到,使,連接EF,分別交于,連結(jié)求證:.19.(8分)已知△ABC中,D為AB邊上任意一點,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α,(1)如圖1所示,當α=60°時,求證:△DCE是等邊三角形;(2)如圖2所示,當α=45°時,求證:=;(3)如圖3所示,當α為任意銳角時,請直接寫出線段CE與DE的數(shù)量關(guān)系:=_____.20.(8分)為看豐富學(xué)生課余文化生活,某中學(xué)組織學(xué)生進行才藝比賽,每人只能從以下五個項目中選報一項:.書法比賽,.繪畫比賽,.樂器比賽,.象棋比賽,.圍棋比賽根據(jù)學(xué)生報名的統(tǒng)計結(jié)果,繪制了如下尚不完整的統(tǒng)計圖:圖1各項報名人數(shù)扇形統(tǒng)計圖:圖2各項報名人數(shù)條形統(tǒng)計圖:根據(jù)以上信息解答下列問題:(1)學(xué)生報名總?cè)藬?shù)為人;(2)如圖1項目D所在扇形的圓心角等于;(3)請將圖2的條形統(tǒng)計圖補充完整;(4)學(xué)校準備從書法比賽一等獎獲得者甲、乙、丙、丁四名同學(xué)中任意選取兩名同學(xué)去參加全市的書法比賽,求恰好選中甲、乙兩名同學(xué)的概率.21.(8分)校車安全是近幾年社會關(guān)注的重大問題,安全隱患主要是超速和超載,某中學(xué)數(shù)學(xué)活動小組設(shè)計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道l上確定點D,使CD與l垂直,測得CD的長等于24米,在l上點D的同側(cè)取點A、B,使∠CAD=30°,∠CBD=60°.求AB的長(結(jié)果保留根號);已知本路段對校車限速為45千米/小時,若測得某輛校車從A到B用時1.5秒,這輛校車是否超速?說明理由.(參考數(shù)據(jù):≈1.7,≈1.4)22.(10分)某校數(shù)學(xué)綜合實踐小組的同學(xué)以“綠色出行”為主題,把某小區(qū)的居民對共享單車的了解和使用情況進行了問卷調(diào)查.在這次調(diào)查中,發(fā)現(xiàn)有20人對于共享單車不了解,使用共享單車的居民每天騎行路程不超過8千米,并將調(diào)查結(jié)果制作成統(tǒng)計圖,如下圖所示:本次調(diào)查人數(shù)共人,使用過共享單車的有人;請將條形統(tǒng)計圖補充完整;如果這個小區(qū)大約有3000名居民,請估算出每天的騎行路程在2~4千米的有多少人?23.(12分)今年,我國海關(guān)總署嚴厲打擊“洋垃圾”違法行動,堅決把“洋垃圾”拒于國門之外.如圖,某天我國一艘海監(jiān)船巡航到A港口正西方的B處時,發(fā)現(xiàn)在B的北偏東60°方向,相距150海里處的C點有一可疑船只正沿CA方向行駛,C點在A港口的北偏東30°方向上,海監(jiān)船向A港口發(fā)出指令,執(zhí)法船立即從A港口沿AC方向駛出,在D處成功攔截可疑船只,此時D點與B點的距離為75海里.(1)求B點到直線CA的距離;(2)執(zhí)法船從A到D航行了多少海里?(結(jié)果保留根號)24.一輛慢車從甲地勻速行駛至乙地,一輛快車同時從乙地出發(fā)勻速行駛至甲地,兩車之間的距離y(千米)與行駛時間x(小時)的對應(yīng)關(guān)系如圖所示:(1)甲乙兩地相距千米,慢車速度為千米/小時.(2)求快車速度是多少?(3)求從兩車相遇到快車到達甲地時y與x之間的函數(shù)關(guān)系式.(4)直接寫出兩車相距300千米時的x值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】
求出正六邊形和陰影部分的面積即可解決問題;【題目詳解】解:正六邊形的面積,
陰影部分的面積,
空白部分與陰影部分面積之比是::1,
故選C.【題目點撥】本題考查正多邊形的性質(zhì)、平移變換等知識,解題的關(guān)鍵是理解題意,靈活運用所學(xué)知識解決問題,屬于中考??碱}型.2、A【解題分析】
根據(jù)已知作出三角形的高線AD,進而得出AD,BD,CD,的長,即可得出三角形的面積.【題目詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,
∴cosB==,
∴∠B=45°,
∵sinC===,
∴AD=3,
∴CD==4,
∴BD=3,
則△ABC的面積是:×AD×BC=×3×(3+4)=.
故選:A.【題目點撥】此題主要考查了解直角三角形的知識,作出AD⊥BC,進而得出相關(guān)線段的長度是解決問題的關(guān)鍵.3、D【解題分析】
根據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到正確的結(jié)論.【題目詳解】解:,故A選項正確;又故B選項正確;平分,,故C選項正確;,故選項錯誤;故選.【題目點撥】本題主要考查了平行線的性質(zhì),解題時注意:兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等.4、A【解題分析】
利用拋物線的對稱性可確定A點坐標為(-3,0),則可對①進行判斷;利用判別式的意義和拋物線與x軸有2個交點可對②進行判斷;由拋物線開口向下得到a>0,再利用對稱軸方程得到b=2a>0,則可對③進行判斷;利用x=-1時,y<0,即a-b+c<0和a>0可對④進行判斷.【題目詳解】∵拋物線的對稱軸為直線x=-1,點B的坐標為(1,0),∴A(-3,0),∴AB=1-(-3)=4,所以①正確;∵拋物線與x軸有2個交點,∴△=b2-4ac>0,所以②正確;∵拋物線開口向下,∴a>0,∵拋物線的對稱軸為直線x=-=-1,∴b=2a>0,∴ab>0,所以③錯誤;∵x=-1時,y<0,∴a-b+c<0,而a>0,∴a(a-b+c)<0,所以④正確.故選A.【題目點撥】本題考查了拋物線與x軸的交點:對于二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0),△=b2-4ac決定拋物線與x軸的交點個數(shù):△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.也考查了二次函數(shù)的性質(zhì).5、B【解題分析】試題分析:根據(jù)平行線分線段成比例可得,然后根據(jù)AC=1,CE=6,BD=3,可代入求解DF=1.2.故選B考點:平行線分線段成比例6、A【解題分析】
分別把點A(?1,y1),點B(?1,y1)代入函數(shù)y=3x,求出點y1,y1的值,并比較出其大小即可.【題目詳解】解:∵點A(?1,y1),點B(?1,y1)是函數(shù)y=3x圖象上的點,∴y1=?6,y1=?3,∵?3>?6,∴y1<y1.故選A.【題目點撥】本題考查的是一次函數(shù)圖象上點的坐標特點,即一次函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式.7、C【解題分析】試題分析:①4是腰長時,三角形的三邊分別為4、4、4,∵4+4=4,∴不能組成三角形,②4是底邊時,三角形的三邊分別為4、4、4,能組成三角形,周長=4+4+4=4,綜上所述,它的周長是4.故選C.考點:4.等腰三角形的性質(zhì);4.三角形三邊關(guān)系;4.分類討論.8、C【解題分析】
首先求得AB與正東方向的夾角的度數(shù),即可求解.【題目詳解】根據(jù)題意得:∠BAC=(90°﹣70°)+15°+90°=125°,故選:C.【題目點撥】本題考查了方向角,正確理解方向角的定義是關(guān)鍵.9、B【解題分析】
陰影部分的面積=三角形的面積-扇形的面積,根據(jù)面積公式計算即可.【題目詳解】由旋轉(zhuǎn)可知AD=BD,∵∠ACB=90°,AC=2,∴CD=BD,∵CB=CD,∴△BCD是等邊三角形,∴∠BCD=∠CBD=60°,∴BC=AC=2,∴陰影部分的面積=2×2÷2?=2?.故答案選:B.【題目點撥】本題考查的知識點是旋轉(zhuǎn)的性質(zhì)及扇形面積的計算,解題的關(guān)鍵是熟練的掌握旋轉(zhuǎn)的性質(zhì)及扇形面積的計算.10、D【解題分析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【題目詳解】3382億=338200000000=3.382×1.故選:D.【題目點撥】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.二、填空題(本大題共6個小題,每小題3分,共18分)11、12【解題分析】
根據(jù)題意可以求得點B'的橫坐標,然后根據(jù)反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過點B'、M,從而可以求得k的值.【題目詳解】解:作B′C⊥y軸于點C,如圖所示,∵∠BAB′=90°,∠AOB=90°,AB=AB′,∴∠BAO+∠ABO=90°,∠BAO+∠B′AC=90°,∴∠ABO=∠BA′C,∴△ABO≌△BA′C,∴AO=B′C,∵點A(0,6),∴B′C=6,設(shè)點B′的坐標為(6,),∵點M是線段AB'的中點,點A(0,6),∴點M的坐標為(3,),∵反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過點M,∴=,解得,k=12,故答案為:12.【題目點撥】本題考查反比例函數(shù)圖象上點的坐標特征、旋轉(zhuǎn)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.12、(,)【解題分析】
作AC⊥OB、O′D⊥A′B,由點A、B坐標得出OC=3、AC=、BC=OC=3,從而知tan∠ABC==,由旋轉(zhuǎn)性質(zhì)知BO′=BO=6,tan∠A′BO′=tan∠ABO==,設(shè)O′D=x、BD=3x,由勾股定理求得x的值,即可知BD、O′D的長即可.【題目詳解】如圖,過點A作AC⊥OB于C,過點O′作O′D⊥A′B于D,
∵A(3,),
∴OC=3,AC=,
∵OB=6,
∴BC=OC=3,
則tan∠ABC==,
由旋轉(zhuǎn)可知,BO′=BO=6,∠A′BO′=∠ABO,
∴==,
設(shè)O′D=x,BD=3x,
由O′D2+BD2=O′B2可得(x)2+(3x)2=62,
解得:x=或x=?(舍),
則BD=3x=,O′D=x=,
∴OD=OB+BD=6+=,
∴點O′的坐標為(,).【題目點撥】本題考查的是圖形的旋轉(zhuǎn),熟練掌握勾股定理和三角函數(shù)是解題的關(guān)鍵.13、2【解題分析】
根據(jù)算術(shù)平方根的定義,求數(shù)a的算術(shù)平方根,也就是求一個正數(shù)x,使得x2=a,則x就是a的算術(shù)平方根,特別地,規(guī)定0的算術(shù)平方根是0.【題目詳解】∵22=4,∴=2.【題目點撥】本題考查求算術(shù)平方根,熟記定義是關(guān)鍵.14、②④⑤【解題分析】
根據(jù)不等式的性質(zhì)可確定①的對錯,根據(jù)多邊形的內(nèi)外角和可確定②的對錯,根據(jù)函數(shù)自變量的取值范圍可確定③的對錯,根據(jù)三角形中位線的性質(zhì)可確定④的對錯,根據(jù)正方形的性質(zhì)可確定⑤的對錯.【題目詳解】①“若a>b,當c<0時,則<,故①是假命題;②六邊形的內(nèi)角和是其外角和的2倍,根據(jù)②真命題;③函數(shù)y=的自變量的取值范圍是x≥﹣1且x≠0,故③是假命題;④三角形的中位線平行于第三邊,并且等于第三邊的一半,故④是真命題;⑤正方形既是軸對稱圖形,又是中心對稱圖形,故⑤是真命題;故答案為②④⑤【題目點撥】本題考查了不等式的性質(zhì)、多邊形的內(nèi)外角和、函數(shù)自變量的取值范圍、三角形中位線的性質(zhì)、正方形的性質(zhì),解答本題的關(guān)鍵是熟練掌握各知識點.15、2【解題分析】試題解析:∵xay與3x2yb是同類項,∴a=2,b=1,則ab=2.16、1.【解題分析】
易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影長.【題目詳解】解:根據(jù)題意,易得△MBA∽△MCO,
根據(jù)相似三角形的性質(zhì)可知,即,
解得AM=1m.則小明的影長為1米.
故答案是:1.【題目點撥】本題只要是把實際問題抽象到相似三角形中,利用相似三角形的相似比可得出小明的影長.三、解答題(共8題,共72分)17、(1)180;(2)每件銷售價為55元時,獲得最大利潤;最大利潤為2250元.【解題分析】分析:(1)根據(jù)“當每件的銷售價每增加1元,每天的銷售數(shù)量將減少10件”,即可解答;(2)根據(jù)等量關(guān)系“利潤=(售價﹣進價)×銷量”列出函數(shù)關(guān)系式,根據(jù)二次函數(shù)的性質(zhì),即可解答.詳解:(1)由題意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案為180;(2)由題意得:y=(x﹣40)[200﹣10(x﹣50)]=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250∴每件銷售價為55元時,獲得最大利潤;最大利潤為2250元.點睛:此題主要考查了二次函數(shù)的應(yīng)用,根據(jù)已知得出二次函數(shù)的最值是中考中考查重點,同學(xué)們應(yīng)重點掌握.18、證明見解析【解題分析】分析:根據(jù)平行四邊形的性質(zhì)以及已知的條件得出△EGD和△FHB全等,從而得出DG=BH,從而說明AG和CH平行且相等,得出四邊形AHCG為平行四邊形,從而得出答案.詳解:證明:在?ABCD中,,,又
,≌,,,又,四邊形AGCH為平行四邊形,.點睛:本題主要考查的是平行四邊形的性質(zhì)以及判定定理,屬于基礎(chǔ)題型.解決這個問題的關(guān)鍵就是根據(jù)平行四邊形的性質(zhì)得出四邊形AHCG為平行四邊形.19、1【解題分析】試題分析:(1)證明△CFD≌△DAE即可解決問題.(2)如圖2中,作FG⊥AC于G.只要證明△CFD∽△DAE,推出=,再證明CF=AD即可.(3)證明EC=ED即可解決問題.試題解析:(1)證明:如圖1中,∵∠ABC=∠ACB=60°,∴△ABC是等邊三角形,∴BC=BA.∵DF∥AC,∴∠BFD=∠BCA=60°,∠BDF=∠BAC=60°,∴△BDF是等邊三角形,∴BF=BD,∴CF=AD,∠CFD=120°.∵AE∥BC,∴∠B+∠DAE=180°,∴∠DAE=∠CFD=120°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=60°,∴∠FCD=∠ADE,∴△CFD≌△DAE,∴DC=DE.∵∠CDE=60°,∴△CDE是等邊三角形.(2)證明:如圖2中,作FG⊥AC于G.∵∠B=∠ACB=45°,∴∠BAC=90°,∴△ABC是等腰直角三角形.∵DF∥AC,∴∠BDF=∠BAC=90°,∴∠BFD=45°,∠DFC=135°.∵AE∥BC,∴∠BAE+∠B=180°,∴∠DFC=∠DAE=135°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=45°,∴∠FCD=∠ADE,∴△CFD∽△DAE,∴=.∵四邊形ADFG是矩形,F(xiàn)C=FG,∴FG=AD,CF=AD,∴=.(3)解:如圖3中,設(shè)AC與DE交于點O.∵AE∥BC,∴∠EAO=∠ACB.∵∠CDE=∠ACB,∴∠CDO=∠OAE.∵∠COD=∠EOA,∴△COD∽△EOA,∴=,∴=.∵∠COE=∠DOA,∴△COE∽△DOA,∴∠CEO=∠DAO.∵∠CED+∠CDE+∠DCE=180°,∠BAC+∠B+∠ACB=180°.∵∠CDE=∠B=∠ACB,∴∠EDC=∠ECD,∴EC=ED,∴=1.點睛:本題考查了相似三角形綜合題、全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,靈活運用所學(xué)知識解決問題,屬于中考壓軸題.20、(1)200;(2)54°;(3)見解析;(4)【解題分析】
(1)根據(jù)A的人數(shù)及所占的百分比即可求出總?cè)藬?shù);(2)用D的人數(shù)除以總?cè)藬?shù)再乘360°即可得出答案;(3)用總?cè)藬?shù)減去A,B,D,E的人數(shù)即為C對應(yīng)的人數(shù),然后即可把條形統(tǒng)計圖補充完整;(4)用樹狀圖列出所有的情況,找出恰好選中甲、乙兩名同學(xué)的情況數(shù),利用概率公式求解即可.【題目詳解】解:(1)學(xué)生報名總?cè)藬?shù)為(人),故答案為:200;(2)項目所在扇形的圓心角等于,故答案為:54°;(3)項目的人數(shù)為,補全圖形如下:(4)畫樹狀圖得:所有出現(xiàn)的等可能性結(jié)果共有12種,其中滿足條件的結(jié)果有2種.恰好選中甲、乙兩名同學(xué)的概率為.【題目點撥】本題主要考查扇形統(tǒng)計圖與條形統(tǒng)計圖的結(jié)合,能夠從圖表中獲取有用信息,掌握概率公式是解題的關(guān)鍵.21、(1);(2)此校車在AB路段超速,理由見解析.【解題分析】
(1)結(jié)合三角函數(shù)的計算公式,列出等式,分別計算AD和BD的長度,計算結(jié)果,即可.(2)在第一問的基礎(chǔ)上,結(jié)合時間關(guān)系,計算速度,判斷,即可.【題目詳解】解:(1)由題意得,在Rt△ADC中,tan30°==,解得AD=24.在Rt△BDC中,tan60°==,解得BD=8所以AB=AD﹣BD=24﹣8=16(米).(2)汽車從A到B用時1.5秒,所以速度為16÷1.5≈18.1(米/秒),因為18.1(米/秒)=65.2千米/時>45千米/時,所以此校車在AB路段超速.【題目點撥】考查三角函數(shù)計算公式,考查速度計算方法,關(guān)鍵利用正切值計算方法,計算結(jié)果,難度中等.22、(1)200,90(2)圖形見解析(3)750人【解題分析】試題分析:(1)用對于共享單車不了解的人數(shù)20除以對于共享單車不了解的人數(shù)所占得百分比即可得本次調(diào)查人數(shù);用總?cè)藬?shù)乘以使用過共享單車人數(shù)所占的百分比即可得使用過共享單車的人數(shù);(2)用使用過共享單車的總?cè)藬?shù)減去0~2,4~6,6~8的人數(shù),即可得2~4的人數(shù),再圖上畫出即可;(3)用3000乘以騎行路程在2~4千米的人數(shù)所占的百分比即可得每天的騎行路程在2~4千米的人數(shù).試題解析:(1)20÷10%=200,200×(1-45%-10%)=90;(2)90-25-10-5=50,補全條形統(tǒng)計圖(3)=750(人)答:每天的騎行路程在2~4千米的大約750人23、(1)B點到直線CA的距離是75海里;(2)執(zhí)法船從A到D航行了(75﹣25)海里.【解題分析】
(1)過點B作BH⊥CA交CA的延長線于點H,根據(jù)三角函數(shù)可求BH的長;(2)根據(jù)勾股定理可求DH,在Rt△ABH中,根據(jù)三角函數(shù)可求AH,進一步得到AD的長.【題目詳解】解:(1)過點B作BH⊥CA交CA的延長線于點H,∵∠MBC=60°,∴∠CBA=30°,∵∠NAD=30°,∴∠BAC=120°,∴∠BCA=180°﹣∠BAC﹣∠CBA=30°,∴BH=BC×sin∠BCA=150×=75(海里).答:B點到直線CA的距離是75海里;(2)∵BD=75海里,BH=75海里,∴DH==75(海里),∵∠BAH=180°﹣∠BAC=60°,在Rt△ABH中,tan∠BAH==,∴AH=25,∴AD=DH﹣AH=(75﹣25)(海里).答:執(zhí)法船從
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024藝術(shù)學(xué)校教室租賃與藝術(shù)展覽合作合同3篇
- 二零二五年度風(fēng)力發(fā)電設(shè)備安裝與運營合同3篇
- 2025年度貓咪品種引進與銷售代理合同4篇
- 二零二四年光伏發(fā)電項目爆破鉆孔合同
- 南昌市2025年度新建住宅買賣合同
- 二零二五版環(huán)保設(shè)施建設(shè)與運營合同3篇
- 2025年度餐飲企業(yè)知識產(chǎn)權(quán)保護合同18篇
- 年度超高純氣體的純化設(shè)備戰(zhàn)略市場規(guī)劃報告
- 2025版智能交通信號系統(tǒng)零星維修施工合同4篇
- 二零二五年度車輛抵押擔(dān)保信托合同范本3篇
- 稱量與天平培訓(xùn)試題及答案
- 超全的超濾與納濾概述、基本理論和應(yīng)用
- 2020年醫(yī)師定期考核試題與答案(公衛(wèi)專業(yè))
- 2022年中國育齡女性生殖健康研究報告
- 各種靜脈置管固定方法
- 消防報審驗收程序及表格
- 教育金規(guī)劃ppt課件
- 呼吸機波形分析及臨床應(yīng)用
- 常用緊固件選用指南
- 私人借款協(xié)議書新編整理版示范文本
- 自薦書(彩色封面)
評論
0/150
提交評論