![2023-2024學(xué)年云南省魯?shù)榭h第二中學(xué)數(shù)學(xué)高三第一學(xué)期期末調(diào)研模擬試題含解析_第1頁](http://file4.renrendoc.com/view10/M03/1A/02/wKhkGWWIWfyAE3ylAAI7EbM8Ml4442.jpg)
![2023-2024學(xué)年云南省魯?shù)榭h第二中學(xué)數(shù)學(xué)高三第一學(xué)期期末調(diào)研模擬試題含解析_第2頁](http://file4.renrendoc.com/view10/M03/1A/02/wKhkGWWIWfyAE3ylAAI7EbM8Ml44422.jpg)
![2023-2024學(xué)年云南省魯?shù)榭h第二中學(xué)數(shù)學(xué)高三第一學(xué)期期末調(diào)研模擬試題含解析_第3頁](http://file4.renrendoc.com/view10/M03/1A/02/wKhkGWWIWfyAE3ylAAI7EbM8Ml44423.jpg)
![2023-2024學(xué)年云南省魯?shù)榭h第二中學(xué)數(shù)學(xué)高三第一學(xué)期期末調(diào)研模擬試題含解析_第4頁](http://file4.renrendoc.com/view10/M03/1A/02/wKhkGWWIWfyAE3ylAAI7EbM8Ml44424.jpg)
![2023-2024學(xué)年云南省魯?shù)榭h第二中學(xué)數(shù)學(xué)高三第一學(xué)期期末調(diào)研模擬試題含解析_第5頁](http://file4.renrendoc.com/view10/M03/1A/02/wKhkGWWIWfyAE3ylAAI7EbM8Ml44425.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年云南省魯?shù)榭h第二中學(xué)數(shù)學(xué)高三第一學(xué)期期末調(diào)研模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的焦距為,若的漸近線上存在點(diǎn),使得經(jīng)過點(diǎn)所作的圓的兩條切線互相垂直,則雙曲線的離心率的取值范圍是()A. B. C. D.2.做拋擲一枚骰子的試驗(yàn),當(dāng)出現(xiàn)1點(diǎn)或2點(diǎn)時(shí),就說這次試驗(yàn)成功,假設(shè)骰子是質(zhì)地均勻的.則在3次這樣的試驗(yàn)中成功次數(shù)X的期望為()A.13 B.13.已知點(diǎn),是函數(shù)的函數(shù)圖像上的任意兩點(diǎn),且在點(diǎn)處的切線與直線AB平行,則()A.,b為任意非零實(shí)數(shù) B.,a為任意非零實(shí)數(shù)C.a(chǎn)、b均為任意實(shí)數(shù) D.不存在滿足條件的實(shí)數(shù)a,b4.已知平行于軸的直線分別交曲線于兩點(diǎn),則的最小值為()A. B. C. D.5.的內(nèi)角的對(duì)邊分別為,若,則內(nèi)角()A. B. C. D.6.若為虛數(shù)單位,則復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.函數(shù)的圖像大致為().A. B.C. D.8.三棱柱中,底面邊長(zhǎng)和側(cè)棱長(zhǎng)都相等,,則異面直線與所成角的余弦值為()A. B. C. D.9.設(shè)a,b都是不等于1的正數(shù),則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件10.如圖所示,已知某幾何體的三視圖及其尺寸(單位:),則該幾何體的表面積為()A. B.C. D.11.復(fù)數(shù)為純虛數(shù),則()A.i B.﹣2i C.2i D.﹣i12.已知直線與圓有公共點(diǎn),則的最大值為()A.4 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記數(shù)列的前項(xiàng)和為,已知,且.若,則實(shí)數(shù)的取值范圍為________.14.已知,,,則的最小值是__.15.函數(shù)在區(qū)間內(nèi)有且僅有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是_____.16.根據(jù)如圖所示的偽代碼,若輸出的的值為,則輸入的的值為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)的內(nèi)角,,的對(duì)邊分別為,,,已知的面積為.(1)求;(2)若,,求的周長(zhǎng).18.(12分)已知正項(xiàng)數(shù)列的前項(xiàng)和.(1)若數(shù)列為等比數(shù)列,求數(shù)列的公比的值;(2)設(shè)正項(xiàng)數(shù)列的前項(xiàng)和為,若,且.①求數(shù)列的通項(xiàng)公式;②求證:.19.(12分)已知拋物線的焦點(diǎn)為,準(zhǔn)線與軸交于點(diǎn),點(diǎn)在拋物線上,直線與拋物線交于另一點(diǎn).(1)設(shè)直線,的斜率分別為,,求證:常數(shù);(2)①設(shè)的內(nèi)切圓圓心為的半徑為,試用表示點(diǎn)的橫坐標(biāo);②當(dāng)?shù)膬?nèi)切圓的面積為時(shí),求直線的方程.20.(12分)選修4-5:不等式選講已知函數(shù)f(x)=log2(|x+1|+|x﹣2|﹣m).(1)當(dāng)m=7時(shí),求函數(shù)f(x)的定義域;(2)若關(guān)于x的不等式f(x)≥2的解集是R,求m的取值范圍.21.(12分)如圖,已知橢圓C:x24+y2=1,F(xiàn)為其右焦點(diǎn),直線l:y=kx+m(km<0)與橢圓交于P(x1(I)試用x1表示|PF|(II)證明:原點(diǎn)O到直線l的距離為定值.22.(10分)已知數(shù)列的前項(xiàng)和為,且滿足.(1)求數(shù)列的通項(xiàng)公式;(2)若,,且數(shù)列前項(xiàng)和為,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由可得;由過點(diǎn)所作的圓的兩條切線互相垂直可得,又焦點(diǎn)到雙曲線漸近線的距離為,則,進(jìn)而求解.【詳解】,所以離心率,又圓是以為圓心,半徑的圓,要使得經(jīng)過點(diǎn)所作的圓的兩條切線互相垂直,必有,而焦點(diǎn)到雙曲線漸近線的距離為,所以,即,所以,所以雙曲線的離心率的取值范圍是.故選:B【點(diǎn)睛】本題考查雙曲線的離心率的范圍,考查雙曲線的性質(zhì)的應(yīng)用.2、C【解析】
每一次成功的概率為p=26=【詳解】每一次成功的概率為p=26=13故選:C.【點(diǎn)睛】本題考查了二項(xiàng)分布求數(shù)學(xué)期望,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.3、A【解析】
求得的導(dǎo)函數(shù),結(jié)合兩點(diǎn)斜率公式和兩直線平行的條件:斜率相等,化簡(jiǎn)可得,為任意非零實(shí)數(shù).【詳解】依題意,在點(diǎn)處的切線與直線AB平行,即有,所以,由于對(duì)任意上式都成立,可得,為非零實(shí)數(shù).故選:A【點(diǎn)睛】本題考查導(dǎo)數(shù)的運(yùn)用,求切線的斜率,考查兩點(diǎn)的斜率公式,以及化簡(jiǎn)運(yùn)算能力,屬于中檔題.4、A【解析】
設(shè)直線為,用表示出,,求出,令,利用導(dǎo)數(shù)求出單調(diào)區(qū)間和極小值、最小值,即可求出的最小值.【詳解】解:設(shè)直線為,則,,而滿足,那么設(shè),則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以故選:.【點(diǎn)睛】本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用:求單調(diào)區(qū)間和極值、最值,考查化簡(jiǎn)整理的運(yùn)算能力,正確求導(dǎo)確定函數(shù)的最小值是關(guān)鍵,屬于中檔題.5、C【解析】
由正弦定理化邊為角,由三角函數(shù)恒等變換可得.【詳解】∵,由正弦定理可得,∴,三角形中,∴,∴.故選:C.【點(diǎn)睛】本題考查正弦定理,考查兩角和的正弦公式和誘導(dǎo)公式,掌握正弦定理的邊角互化是解題關(guān)鍵.6、D【解析】
根據(jù)復(fù)數(shù)的運(yùn)算,化簡(jiǎn)得到,再結(jié)合復(fù)數(shù)的表示,即可求解,得到答案.【詳解】由題意,根據(jù)復(fù)數(shù)的運(yùn)算,可得,所對(duì)應(yīng)的點(diǎn)為位于第四象限.故選D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的運(yùn)算,以及復(fù)數(shù)的幾何意義,其中解答中熟記復(fù)數(shù)的運(yùn)算法則,準(zhǔn)確化簡(jiǎn)復(fù)數(shù)為代數(shù)形式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.7、A【解析】
本題采用排除法:由排除選項(xiàng)D;根據(jù)特殊值排除選項(xiàng)C;由,且無限接近于0時(shí),排除選項(xiàng)B;【詳解】對(duì)于選項(xiàng)D:由題意可得,令函數(shù),則,;即.故選項(xiàng)D排除;對(duì)于選項(xiàng)C:因?yàn)?故選項(xiàng)C排除;對(duì)于選項(xiàng)B:當(dāng),且無限接近于0時(shí),接近于,,此時(shí).故選項(xiàng)B排除;故選項(xiàng):A【點(diǎn)睛】本題考查函數(shù)解析式較復(fù)雜的圖象的判斷;利用函數(shù)奇偶性、特殊值符號(hào)的正負(fù)等有關(guān)性質(zhì)進(jìn)行逐一排除是解題的關(guān)鍵;屬于中檔題.8、B【解析】
設(shè),,,根據(jù)向量線性運(yùn)算法則可表示出和;分別求解出和,,根據(jù)向量夾角的求解方法求得,即可得所求角的余弦值.【詳解】設(shè)棱長(zhǎng)為1,,,由題意得:,,,又即異面直線與所成角的余弦值為:本題正確選項(xiàng):【點(diǎn)睛】本題考查異面直線所成角的求解,關(guān)鍵是能夠通過向量的線性運(yùn)算、數(shù)量積運(yùn)算將問題轉(zhuǎn)化為向量夾角的求解問題.9、C【解析】
根據(jù)對(duì)數(shù)函數(shù)以及指數(shù)函數(shù)的性質(zhì)求解a,b的范圍,再利用充分必要條件的定義判斷即可.【詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C.【點(diǎn)睛】本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數(shù),對(duì)數(shù)不等式的解法,是基礎(chǔ)題.10、C【解析】
由三視圖知,該幾何體是一個(gè)圓錐,其母線長(zhǎng)是5,底面直徑是6,據(jù)此可計(jì)算出答案.【詳解】由三視圖知,該幾何體是一個(gè)圓錐,其母線長(zhǎng)是5,底面直徑是6,該幾何體的表面積.故選:C【點(diǎn)睛】本題主要考查了三視圖的知識(shí),幾何體的表面積的計(jì)算.由三視圖正確恢復(fù)幾何體是解題的關(guān)鍵.11、B【解析】
復(fù)數(shù)為純虛數(shù),則實(shí)部為0,虛部不為0,求出,即得.【詳解】∵為純虛數(shù),∴,解得..故選:.【點(diǎn)睛】本題考查復(fù)數(shù)的分類,屬于基礎(chǔ)題.12、C【解析】
根據(jù)表示圓和直線與圓有公共點(diǎn),得到,再利用二次函數(shù)的性質(zhì)求解.【詳解】因?yàn)楸硎緢A,所以,解得,因?yàn)橹本€與圓有公共點(diǎn),所以圓心到直線的距離,即,解得,此時(shí),因?yàn)?,在遞增,所以的最大值.故選:C【點(diǎn)睛】本題主要考查圓的方程,直線與圓的位置關(guān)系以及二次函數(shù)的性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)遞推公式,以及之間的關(guān)系,即可容易求得,再根據(jù)數(shù)列的單調(diào)性,求得其最大值,則參數(shù)的范圍可求.【詳解】當(dāng)時(shí),,解得.所以.因?yàn)?,則,兩式相減,可得,即,則.兩式相減,可得.所以數(shù)列是首項(xiàng)為3,公差為2的等差數(shù)列,所以,則.令,則.當(dāng)時(shí),,數(shù)列單調(diào)遞減,而,,,故,即實(shí)數(shù)的取值范圍為.故答案為:.【點(diǎn)睛】本題考查由遞推公式求數(shù)列的通項(xiàng)公式,涉及數(shù)列單調(diào)性的判斷,屬綜合困難題.14、.【解析】
因?yàn)?,展開后利用基本不等式,即可得到本題答案.【詳解】由,得,所以,當(dāng)且僅當(dāng),取等號(hào).故答案為:【點(diǎn)睛】本題主要考查利用基本不等式求最值,考查學(xué)生的轉(zhuǎn)化能力和運(yùn)算求解能力.15、【解析】
對(duì)函數(shù)零點(diǎn)問題等價(jià)轉(zhuǎn)化,分離參數(shù)討論交點(diǎn)個(gè)數(shù),數(shù)形結(jié)合求解.【詳解】由題:函數(shù)在區(qū)間內(nèi)有且僅有兩個(gè)零點(diǎn),,等價(jià)于函數(shù)恰有兩個(gè)公共點(diǎn),作出大致圖象:要有兩個(gè)交點(diǎn),即,所以.故答案為:【點(diǎn)睛】此題考查函數(shù)零點(diǎn)問題,根據(jù)函數(shù)零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍,關(guān)鍵在于對(duì)函數(shù)零點(diǎn)問題恰當(dāng)變形,等價(jià)轉(zhuǎn)化,數(shù)形結(jié)合求解.16、【解析】
算法的功能是求的值,根據(jù)輸出的值,分別求出當(dāng)時(shí)和當(dāng)時(shí)的值即可得解.【詳解】解:由程序語句知:算法的功能是求的值,當(dāng)時(shí),,可得:,或(舍去);當(dāng)時(shí),,可得:(舍去).綜上的值為:.故答案為:.【點(diǎn)睛】本題考查了選擇結(jié)構(gòu)的程序語句,根據(jù)語句判斷算法的功能是解題的關(guān)鍵,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)根據(jù)三角形面積公式和正弦定理可得答案;(2)根據(jù)兩角余弦公式可得,即可求出,再根據(jù)正弦定理可得,根據(jù)余弦定理即可求出,問題得以解決.【詳解】(1)由三角形的面積公式可得,,由正弦定理可得,,;(2),,,,,則由,可得:,由,可得:,,可得:,經(jīng)檢驗(yàn)符合題意,三角形的周長(zhǎng).(實(shí)際上可解得,符合三邊關(guān)系).【點(diǎn)睛】本題考查了三角形的面積公式、兩角和的余弦公式、誘導(dǎo)公式,考查正弦定理,余弦定理在解三角形中的綜合應(yīng)用,考查了學(xué)生的運(yùn)算能力,考查了轉(zhuǎn)化思想,屬于中檔題.18、(1);(2)①;②詳見解析.【解析】
(1)依題意可表示,,相減得,由等比數(shù)列通項(xiàng)公式轉(zhuǎn)化為首項(xiàng)與公比,解得答案,并由其都是正項(xiàng)數(shù)列舍根;(2)①由題意可表示,,兩式相減得,由其都是正項(xiàng)并整理可得遞推關(guān)系,由等差數(shù)列的通項(xiàng)公式即可得答案;②由已知關(guān)系,表示并相減即可表示遞推關(guān)系,顯然當(dāng)時(shí),成立,當(dāng),時(shí),表示,由分組求和與正項(xiàng)數(shù)列性質(zhì)放縮不等式得證.【詳解】解:(1)依題意可得,,兩式相減,得,所以,因?yàn)?,所以,且,解?(2)①因?yàn)椋?,兩式相減,得,即.因?yàn)?,所以,?而當(dāng)時(shí),,可得,故,所以對(duì)任意的正整數(shù)都成立,所以數(shù)列是等差數(shù)列,公差為1,首項(xiàng)為1,所以數(shù)列的通項(xiàng)公式為.②因?yàn)?,所以,兩式相減,得,即,所以對(duì)任意的正整數(shù),都有.令,而當(dāng)時(shí),顯然成立,所以當(dāng),時(shí),,所以,即,所以,得證.【點(diǎn)睛】本題考查由前n項(xiàng)和關(guān)系求等比數(shù)列公比,求等差數(shù)列通項(xiàng)公式,還考查了由分組求和表示數(shù)列和并由正項(xiàng)數(shù)列放縮證明不等式,屬于難題.19、(1)證明見解析;(2)①;②.【解析】
(1)設(shè)過的直線交拋物線于,,聯(lián)立,利用直線的斜率公式和韋達(dá)定理表示出,化簡(jiǎn)即可;(2)由(1)知點(diǎn)在軸上,故,設(shè)出直線方程,求出交點(diǎn)坐標(biāo),因?yàn)閮?nèi)心到三角形各邊的距離相等且均為內(nèi)切圓半徑,列出方程組求解即可.【詳解】(1)設(shè)過的直線交拋物線于,,聯(lián)立方程組,得:.于是,有:,又,;(2)①由(1)知點(diǎn)在軸上,故,聯(lián)立的直線方程:.,又點(diǎn)在拋物線上,得,又,;②由題得,(解法一)所以直線的方程為(解法二)設(shè)內(nèi)切圓半徑為,則.設(shè)直線的斜率為,則:直線的方程為:代入直線的直線方程,可得于是有:得,又由(1)可設(shè)內(nèi)切圓的圓心為則,即:,解得:所以,直線的方程為:.【點(diǎn)睛】本題主要考查了拋物線的性質(zhì),直線與拋物線相關(guān)的綜合問題的求解,考查了學(xué)生的運(yùn)算求解與邏輯推理能力.20、(1),(2)【解析】試題分析:用零點(diǎn)分區(qū)間討論法解含絕對(duì)值的不等式,根據(jù)絕對(duì)值三角不等式得出,不等式|x+1|+|x﹣2|≥m+4解集是R,只需m+4≤3,得出的范圍.試題解析:(1)由題設(shè)知:|x+1|+|x﹣2|>7,不等式的解集是以下不等式組解集的并集:,或,或,解得函數(shù)f(x)的定義域?yàn)椋ī仭?,?)∪(4,+∞).(2)不等式f(x)≥2即|x+1|+|x﹣2|≥m+4,∵x∈R時(shí),恒有|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,不等式|x+1|+|x﹣2|≥m+4解集是R,∴m+4≤3,m的取值范圍是(﹣∞,﹣1].21、(I)|FP|=2-32x【解析】
(I)直接利用兩點(diǎn)間距離公式化簡(jiǎn)得到答案.(II)設(shè)Ax3,y3,Bx4【詳解】(I)橢圓C:x24|FP|=x(II)設(shè)Ax3,y3,B4k2+1x2OA
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年五年級(jí)英語教師期末工作總結(jié)樣本(2篇)
- 印刷廠裝修延期合同
- 商業(yè)空間裝修工程勞動(dòng)合同
- 學(xué)校修繕項(xiàng)目用工協(xié)議
- 林業(yè)公司網(wǎng)點(diǎn)裝修合同
- 教育機(jī)構(gòu)裝修免租期協(xié)議
- 商場(chǎng)電梯間瓦工改造協(xié)議
- 地下餐廳裝修合同范本
- 服裝輔料危險(xiǎn)品運(yùn)輸協(xié)議
- 公司簽股合同范例
- 儲(chǔ)運(yùn)部部長(zhǎng)年終總結(jié)
- 物業(yè)管理裝修管理規(guī)定(5篇)
- (新版)工業(yè)機(jī)器人系統(tǒng)操作員(三級(jí))職業(yè)鑒定理論考試題庫(含答案)
- 教育環(huán)境分析報(bào)告
- 人力資源服務(wù)公司章程
- (正式版)CB∕T 4552-2024 船舶行業(yè)企業(yè)安全生產(chǎn)文件編制和管理規(guī)定
- 自動(dòng)體外除顫器項(xiàng)目創(chuàng)業(yè)計(jì)劃書
- 病案管理質(zhì)量控制指標(biāo)檢查要點(diǎn)
- 2024年西藏中考物理模擬試題及參考答案
- 臨時(shí)用電安全注意事項(xiàng)(3篇)
- 九型人格與領(lǐng)導(dǎo)力講義
評(píng)論
0/150
提交評(píng)論