版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年吉林省伊通縣聯(lián)考數(shù)學九年級第一學期期末質量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.袋子中裝有4個黑球和2個白球,這些球的形狀、大小、質地等完全相同,在看不到球的條件下,隨機地從袋子中摸出三個球.下列事件是必然事件的是()A.摸出的三個球中至少有一個球是黑球B.摸出的三個球中至少有一個球是白球C.摸出的三個球中至少有兩個球是黑球D.摸出的三個球中至少有兩個球是白球2.如圖,△ABC的三個頂點分別為A(1,2)、B(4,2)、C(4,4).若反比例函數(shù)y=在第一象限內的圖象與△ABC有交點,則k的取值范圍是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤163.已知二次函數(shù)y=mx2+x+m(m-2)的圖像經(jīng)過原點,則m的值為()A.0或2 B.0 C.2 D.無法確定4.在平面直角坐標系中,點,,過第四象限內一動點作軸的垂線,垂足為,且,點、分別在線段和軸上運動,則的最小值是()A. B. C. D.5.在以下四個圖案中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.6.下列方程中,是一元二次方程的是()A.2x+y=1 B.x2+3xy=6 C.x+=4 D.x2=3x﹣27.在下列命題中,正確的是A.對角線相等的四邊形是平行四邊形B.有一個角是直角的四邊形是矩形C.有一組鄰邊相等的平行四邊形是菱形D.對角線互相垂直平分的四邊形是正方形8.如圖,在直角坐標系中,矩形OABC的頂點O在坐標原點,邊OA在x軸上,OC在y軸上,如果矩形OA'B'C'與矩形OABC關于點O位似,且矩形OA'B'C'的面積等于矩形OABC面積的,那么點B'的坐標是()A.(3,2) B.(-2,-3) C.(2,3)或(-2,-3) D.(3,2)或(-3,-2)9.設,下列變形正確的是()A. B. C. D.10.按如下方法,將△ABC的三邊縮小到原來的,如圖,任取一點O,連結AO,BO,CO,并取它們的中點D、E、F,得△DEF;則下列說法錯誤的是()A.點O為位似中心且位似比為1:2B.△ABC與△DEF是位似圖形C.△ABC與△DEF是相似圖形D.△ABC與△DEF的面積之比為4:111.如圖,AB為⊙O的直徑,CD是⊙O的弦,∠ADC=35°,則∠CAB的度數(shù)為(
)A.35° B.45° C.55° D.65°12.若a是方程的一個解,則的值為A.3 B. C.9 D.二、填空題(每題4分,共24分)13.三張完全相同的卡片,正面分別標有數(shù)字0,1,2,先將三張卡片洗勻后反面朝上,隨機抽取一張,記下卡片上的數(shù)字m,放置一邊,再從剩余的卡片中隨機抽取一張卡片,記下卡片上的數(shù)字n,則滿足關于x的方程x2+mx+n=0有實數(shù)根的概率為______.14.如圖三角形ABC的兩條高線BD,CE相交于點F,已知∠ABC等于60度,,CF=EF,則三角形ABC的面積為________(用含的代數(shù)式表示).15.有三張正面分別寫有數(shù)字﹣1,1,2的卡片,它們背面完全相同,現(xiàn)將這三張卡片背面朝上洗勻后隨即抽取一張,以其正面數(shù)字作為a的值,然后再從剩余的兩張卡片隨機抽一張,以其正面的數(shù)字作為b的值,則點(a,b)在第二象限的概率為_____.16.如圖,在反比例函數(shù)的圖象上任取一點P,過P點分別作x軸,y軸的垂線,垂足分別為M,N,那么四邊形PMON的面積為_____.17.已知拋物線,那么點P(-3,4)關于該拋物線的對稱軸對稱的點的坐標是______.18.計算sin60°tan60°-cos45°cos60°的結果為______.三、解答題(共78分)19.(8分)如圖,為反比例函數(shù)(x>0)圖象上的一點,在軸正半軸上有一點,.連接,,且.(1)求的值;(2)過點作,交反比例函數(shù)(x>0)的圖象于點,連接交于點,求的值.20.(8分)如圖,在直角坐標系中,點A的坐標為(-2,0),OB=OA,且∠AOB=120°.(1)求經(jīng)過A、O、B三點的拋物線的解析式;(2)在(1)中拋物線的對稱軸上是否存在點C,使△OBC的周長最???若存在,求出點C的坐標;若不存在,請說明理由;(3)若點M為拋物線上一點,點N為對稱軸上一點,是否存在點M、N使得A、O、M、N構成的四邊形是平行四邊形?若存在,求出點M的坐標;若不存在,請說明理由.21.(8分)已知:如圖,在△ABC中,AD⊥BC于點D,E是AD的中點,連接CE并延長交邊AB于點F,AC=13,BC=8,cos∠ACB=.(1)求tan∠DCE的值;(2)求的值.22.(10分)在平面直角坐標系中的兩個圖形與,給出如下定義:為圖形上任意一點,為圖形上任意一點,如果兩點間的距離有最小值,那么稱這個最小值為圖形間的“和睦距離”,記作,若圖形有公共點,則.(1)如圖(1),,,⊙的半徑為2,則,;(2)如圖(2),已知的一邊在軸上,在上,且,,.①是內一點,若、分別且⊙于E、F,且,判斷與⊙的位置關系,并求出點的坐標;②若以為半徑,①中的為圓心的⊙,有,,直接寫出的取值范圍.23.(10分)某商店購進600個旅游紀念品,進價為每個6元,第一周以每個10元的價格售出200個,第二周若按每個10元的價格銷售仍可售出200個,但商店為了適當增加銷量,決定降價銷售(根據(jù)市場調查,單價每降低1元,可多售出50個,但售價不得低于進價),單價降低x元銷售銷售一周后,商店對剩余旅游紀念品清倉處理,以每個4元的價格全部售出,如果這批旅游紀念品共獲利1250元,問第二周每個旅游紀念品的銷售價格為多少元?24.(10分)如圖1,在平面直角坐標系中,已知拋物線與軸交于,兩點,與軸交于點.(1)求拋物線的函數(shù)表達式;(2)若點P是位于直線BC上方拋物線上的一個動點,求△BPC面積的最大值;(3)若點D是y軸上的一點,且以B,C,D為頂點的三角形與相似,求點D的坐標;(4)若點E為拋物線的頂點,點F(3,a)是該拋物線上的一點,在軸、軸上分別找點M、N,使四邊形EFMN的周長最小,求出點M、N的坐標.25.(12分)已知,如圖,是直角三角形斜邊上的中線,交的延長線于點.求證:;若,垂足為點,且,求的值.26.如圖,點B、D、E在一條直線上,BE交AC于點F,,且∠BAD=∠CAE.(1)求證:△ABC∽△ADE;(2)求證:△AEF∽△BFC.
參考答案一、選擇題(每題4分,共48分)1、A【分析】根據(jù)必然事件的概念:在一定條件下,必然發(fā)生的事件叫做必然事件分析判斷即可.【詳解】A、是必然事件;B、是隨機事件,選項錯誤;C、是隨機事件,選項錯誤;D、是隨機事件,選項錯誤.故選A.2、C【解析】試題解析:由于△ABC是直角三角形,所以當反比例函數(shù)經(jīng)過點A時k最小,進過點C時k最大,據(jù)此可得出結論.∵△ABC是直角三角形,∴當反比例函數(shù)經(jīng)過點A時k最小,經(jīng)過點C時k最大,∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故選C.3、C【分析】根據(jù)題意將(0,0)代入解析式,得出關于m的方程,解之得出m的值,由二次函數(shù)的定義進行分析可得答案.【詳解】解:∵二次函數(shù)y=mx1+x+m(m-1)的圖象經(jīng)過原點,∴將(0,0)代入解析式,得:m(m-1)=0,解得:m=0或m=1,又∵二次函數(shù)的二次項系數(shù)m≠0,∴m=1.故選:C.【點睛】本題考查二次函數(shù)圖象上點的坐標特征以及二次函數(shù)的定義,熟練掌握二次函數(shù)圖象上的點滿足函數(shù)解析式及二次函數(shù)的定義是解題的關鍵.4、B【分析】先求出直線AB的解析式,再根據(jù)已知條件求出點C的運動軌跡,由一次函數(shù)的圖像及性質可知:點C的運動軌跡和直線AB平行,過點C作CE⊥AB交x軸于P,交AB于E,過點M(0,-3)作MN⊥AB于N根據(jù)垂線段最短和平行線之間的距離處處相等,可得此時CE即為的最小值,且MN=CE,然后利用銳角三角函數(shù)求MN即可求出CE.【詳解】解:設直線AB的解析式為y=ax+b(a≠0)將點,代入解析式,得解得:∴直線AB的解析式為設C點坐標為(x,y)∴CD=x,OD=-y∵∴整理可得:,即點C的運動軌跡為直線的一部分由一次函數(shù)的性質可知:直線和直線平行,過點C作CE⊥AB交x軸于P,交AB于E,過點M(0,-3)作MN⊥AB于N根據(jù)垂線段最短和平行線之間的距離處處相等,可得此時CE即為的最小值,且MN=CE,如圖所示在Rt△AOB中,AB=,sin∠BAO=在Rt△AMN中,AM=6,sin∠MAN=∴CE=MN=,即的最小值是.故選:B.【點睛】此題考查的是一次函數(shù)的圖像及性質、動點問題和解直角三角形,掌握用待定系數(shù)法求一次函數(shù)的解析式、一次函數(shù)的圖像及性質、垂線段最短和平行線之間的距離處處相等是解決此題的關鍵.5、B【分析】旋轉180后能夠與原圖形完全重合即是中心對稱圖形,根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、不是軸對稱圖形,是中心對稱圖形,不合題意;B、是軸對稱圖形,也是中心對稱圖形,符合題意;C、是軸對稱圖形,不是中心對稱圖形,不合題意;D、是軸對稱圖形,不是中心對稱圖形,不合題意.故選:B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.6、D【分析】利用一元二次方程的定義判斷即可.【詳解】解:A、原方程為二元一次方程,不符合題意;B、原式方程為二元二次方程,不符合題意;C、原式為分式方程,不符合題意;D、原式為一元二次方程,符合題意,故選:D.【點睛】此題主要考查一元二次方程的識別,解題的關鍵是熟知一元二次方程的定義.7、C【分析】根據(jù)平行四邊形、矩形、菱形、正方形的判定方法逐項分析解答即可.【詳解】解:A、∵等腰梯形的對角線相等,但不是平行四邊形,∴應對角線相等的四邊形不一定是平行四邊形,故不正確;B、∵有一個角是直角的四邊形可能是矩形、直角梯形,∴有一個角是直角的四邊形不一定是矩形,故不正確;C、∵有一組鄰邊相等的平行四邊形是菱形,故正確;D、對角線互相垂直平分的四邊形是菱形,故不正確.故選:C.【點睛】本題考查了平行四邊形、矩形、菱形、正方形的判定方法的理解,熟練掌握平行四邊形、矩形、菱形、正方形的判定方法的判定方法是解答本題的關鍵.8、D【分析】利用位似圖形的性質得出位似比,進而得出對應點的坐標.【詳解】解:∵矩形OA′B′C′的面積等于矩形OABC面積的,
∴兩矩形面積的相似比為:1:2,
∵B的坐標是(6,4),∴點B′的坐標是:(3,2)或(?3,?2).
故答案為:D.【點睛】此題主要考查了位似變換的性質,得出位似圖形對應點坐標性質是解題關鍵.9、D【分析】根據(jù)比例的性質逐個判斷即可.【詳解】解:由得,2a=3b,A、∵,∴2b=3a,故本選項不符合題意;
B、∵,∴3a=2b,故本選項不符合題意;
C、,故本選項不符合題意;
D、,故本選項符合題意;
故選:D.【點睛】本題考查了比例的性質,能熟記比例的性質是解此題的關鍵,如果,那么ad=bc.10、A【分析】根據(jù)位似圖形的性質,得出①△ABC與△DEF是位似圖形進而根據(jù)位似圖形一定是相似圖形得出②△ABC與△DEF是相似圖形,再根據(jù)周長比等于位似比,以及根據(jù)面積比等于相似比的平方,即可得出答案.【詳解】∵如圖,任取一點O,連結AO,BO,CO,并取它們的中點D、E、F,得△DEF,∴將△ABC的三邊縮小到原來的,此時點O為位似中心且△ABC與△DEF的位似比為2:1,故選項A說法錯誤,符合題意;△ABC與△DEF是位似圖形,故選項B說法正確,不合題意;△ABC與△DEF是相似圖形,故選項C說法正確,不合題意;△ABC與△DEF的面積之比為4:1,故選項D說法正確,不合題意;故選:A.【點睛】此題主要考查了位似圖形的性質,正確的記憶位似圖形性質是解決問題的關鍵.11、C【解析】分析:由同弧所對的圓周角相等可知∠B=∠ADC=35°;而由圓周角的推論不難得知∠ACB=90°,則由∠CAB=90°-∠B即可求得.詳解:∵∠ADC=35°,∠ADC與∠B所對的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直徑,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故選C.點睛:本題考查了同弧所對的圓周角相等以及直徑所對的圓周角是直角等知識.12、C【解析】由題意得:2a2-a-3=0,所以2a2-a=3,所以6a2-3a=3(2a2-a)=3×3=9,故選C.二、填空題(每題4分,共24分)13、【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與滿足關于x的方程x2+mx+n=0有實數(shù)根的情況,再利用概率公式即可求得答案.【詳解】畫樹狀圖得:∵共有6種等可能的結果,滿足關于x的方程x2+mx+n=0有實數(shù)根的有3種情況,∴滿足關于x的方程x2+mx+n=0有實數(shù)根的概率為:=.故答案為:.【點睛】本題主要考查一元二次方程根的判別式與概率,掌握畫樹狀圖求得等可能的結果數(shù)以及概率公式,是解題的關鍵.14、【分析】連接AF延長AF交BC于G.設EF=CF=x,連接AF延長AF交BC于G.設EF=CF=x,因為BD、CE是高,所以AG⊥BC,由∠ABC=60°,∠AGB=90°,推出∠BAG=30°,在Rt△AEF中,由EF=x,∠EAF=30°,可得在Rt△BCE中,由EC=2x,∠CBE=60°可得.由AE+BE=AB可得,代入即可解決問題.【詳解】解:連接延長交于,設==,是高,,,,,在中,,,,在中,,,,,,,.【點睛】本題考查了勾股定理,含30度角的直角三角形,掌握勾股定理和30°直角三角形是解題的關鍵.15、【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果以及點(a,b)在第二象限的情況,再利用概率公式即可求得答案.【詳解】解:畫樹狀圖圖得:∵共有6種等可能的結果,點(a,b)在第二象限的有2種情況,∴點(a,b)在第二象限的概率為:.故答案為:.【點睛】本題考查的是利用公式計算某個事件發(fā)生的概率,注意找全所有可能出現(xiàn)的結果數(shù)作分母.在判斷某個事件A可能出現(xiàn)的結果數(shù)時,要注意審查關于事件A的說法,避免多數(shù)或少數(shù).16、1【分析】設出點P的坐標,四邊形PMON的面積等于點P的橫縱坐標的積的絕對值,把相關數(shù)值代入即可.【詳解】設點P的坐標為(x,y),∵點P的反比例函數(shù)的圖象上,∴xy=﹣1,作軸于,作軸于,∴四邊形PMON為矩形,∴四邊形PMON的面積為|xy|=1,故答案為1.【點睛】考查反比例函數(shù)的比例系數(shù)的意義;用到的知識點為:在反比例函數(shù)圖象上的點的橫縱坐標的積等于反比例函數(shù)的比例系數(shù).注意面積應為正值.17、(1,4).【解析】試題解析:拋物線的對稱軸為:點關于該拋物線的對稱軸對稱的點的坐標是故答案為18、1【分析】直接利用特殊角的三角函數(shù)值分別代入求出答案.【詳解】解:原式=1【點睛】此題主要考查了特殊角的三角函數(shù)值,正確記憶相關數(shù)據(jù)是解題關鍵.三、解答題(共78分)19、(1)k=12;(2).【分析】(1)過點作交軸于點,交于點,易知OH長度,在直角三角形OHA中得到AH長度,從而得到A點坐標,進而算出k值;(2)先求出D點坐標,得到BC長度,從而得到AM長度,由平行線得到,所以【詳解】解:(1)過點作交軸于點,交于點.(2)【點睛】本題主要考查反比例函數(shù)與相似三角形的綜合問題,難度不大,解題關鍵在于求出k20、(1);(2)(-1,);(3)M1(-1,-),M2(-3,),M3(1,).【解析】(1)先確定出點B坐標,再用待定系數(shù)法即可;(2)先判斷出使△BOC的周長最小的點C的位置,再求解即可;(3)分OA為對角線、為邊這兩種情況進行討論計算即可得出答案.【詳解】(1)如圖所示,過點B作BD⊥x軸于點D,∵點A的坐標為(-2,0),OB=OA,∴OB=OA=2,∵∠AOB=120°,∴∠BOD=60°,在Rt△OBD中,∠ODB=90°,∴∠OBD=30°,∴OD=1,DB=,∴點B的坐標是(1,),設所求拋物線的解析式為y=ax2+bx+c,由已知可得:,解得:∴所求拋物線解析式為;(2)存在.如圖所示,∵△BOC的周長=OB+BC+CO,又∵OB=2,∴要使△BOC的周長最小,必須BC+CO最小,∵點O和點A關于對稱軸對稱,∴連接AB與對稱軸的交點即為點C,由對稱可知,OC=OA,此時△BOC的周長=OB+BC+CO=OB+BC+AC;點C為直線AB與拋物線對稱軸的交點,設直線AB的解析式為y=kx+b,將點A(?2,0),B(1,)分別代入,得:,解得:,∴直線AB的解析式為y=x+,當x=?1時,y=,∴所求點C的坐標為(?1,);(3)如圖所示,①當以OA為對角線時,∵OA與MN互相垂直且平分,∴點M1(?1,?),②當以OA為邊時,∵OA=MN且OA∥MN,即MN=2,MN∥x軸,設N(?1,t),則M(?3,t)或(1,t)將M點坐標代入,解得,t=,∴M2(?3,),M3(1,)綜上:點M的坐標為:(-1,-),或(-3,)或(1,).【點睛】本題是一道二次函數(shù)綜合題,主要考查了二次函數(shù)的性質、最短路徑、平行四邊形等知識.綜合運用所學知識,并進行分類討論是解題的關鍵.21、(1)tan∠DCE=;(2)=.【分析】(1)根據(jù)已知條件求出CD,再利用勾股定理求解出ED,即可得到結果;(2)過D作DG∥CF交AB于點G,根據(jù)平行線分線段成比例即可求得結果;【詳解】解:(1)∵AD⊥BC,∴∠ADC=90°,在Rt△ADC中,AC=13,cos∠ACB=,∴CD=5,由勾股定理得:AD=,∵E是AD的中點,∴ED=AD=6,∴tan∠DCE=;(2)過D作DG∥CF交AB于點G,如圖所示:∵BC=8,CD=5,∴BD=BC﹣CD=3,∵DG∥CF,∴,,∴AF=FG,設BG=3x,則AF=FG=5x,BF=FG+BG=8x∴.【點睛】本題主要考查了解直角三角形的應用,結合勾股定理和平行線分線段成比例求解是解題的關鍵.22、(1)2,;(2)①是⊙的切線,;②或.【分析】(1)根據(jù)圖形M,N間的“和睦距離”的定義結合已知條件求解即可.(2)①連接DF,DE,作DH⊥AB于H.設OC=x.首先證明∠CBO=30,再證明DH=DE即可證明是⊙的切線,再求出OE,DE的長即可求出點D的坐標.②根據(jù),得到不等式組解決問題即可.【詳解】(1)∵A(0,1),C(3,4),⊙C的半徑為2,∴d(C,⊙C)=2,d(O,⊙C)=AC?2=,故答案為2;;(2)①連接,作于.設.∵,∴,解得,∴,∴,,∵是⊙的切線,∴平分,∴,∴,∵,∴,∴,∴是⊙的切線.∵,設,∵,∴,∴,,∴,∴,②∵∴B(0,)∴BD=由,,得解得或故答案為:或.【點睛】本題屬于圓綜合題,考查了圖形M,N間的“和睦距離”,解直角三角形的應用,切線的判定和性質,不等式組等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考壓軸題.23、第二周的銷售價格為2元.【分析】由紀念品的進價和售價以及銷量分別表示出兩周的總利潤,根據(jù)“這批旅游紀念品共獲利1250元”等式求出即可.【詳解】解:設降低x元,由題意得出:,整理得:,解得:x1=x2=1.∴10-1=2.答:第二周的銷售價格為2元.24、(1);(2)△BPC面積的最大值為;(3)D的坐標為(0,1)或(0,);(4)M(,0),N(0,)【分析】(1)拋物線的表達式為:y=a(x+1)(x-5)=a(x2-4x-5),即-5a=5,解得:a=-1,即可求解;(2)利用S△BPC=×PH×OB=(-x2+4x+5+x-5)=(x-)2+,即可求解;(3)B、C、D為頂點的三角形與△ABC相似有兩種情況,分別求解即可;(4)作點E關于y軸的對稱點E′(-2,9),作點F(2,9)關于x軸的對稱點F′(3,-8),連接E′、F′分別交x、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 招標策略大揭秘3篇
- 按摩店合伙協(xié)議書范本3篇
- 教育培訓勞動合同范本2篇
- 尾氣減排志愿者行動3篇
- 撤訴授權書格式撰寫要點3篇
- 文明進步守則3篇
- 交通園區(qū)機場建設協(xié)議
- 拍賣場地租賃協(xié)議
- 金融服務合同簽訂及執(zhí)行管理辦法
- 商業(yè)區(qū)步行街護欄裝修合同
- 哈工大材料力學試卷及答案
- 五星級酒店精裝修報價清單
- QC成果提高鋼結構栓釘焊接一次合格率
- YY/T 0506.5-2009病人、醫(yī)護人員和器械用手術單、手術衣和潔凈服第5部分:阻干態(tài)微生物穿透試驗方法
- FZ/T 90097-2017染整機械軋車線壓力
- 你比劃-我來猜(適合小學生)課件
- 《我國二手車市場的現(xiàn)狀及前景【論文】4600字》
- (完整)公共衛(wèi)生基本知識考試題題庫及答案
- 《紅樓夢》作品簡介名著導讀 國學經(jīng)典 PPT模板
- EBV相關TNK細胞淋巴組織增殖性疾病
- 中國電信-員工手冊(共20頁)
評論
0/150
提交評論