2024屆河南省尉氏縣數(shù)學(xué)九上期末聯(lián)考模擬試題含解析_第1頁
2024屆河南省尉氏縣數(shù)學(xué)九上期末聯(lián)考模擬試題含解析_第2頁
2024屆河南省尉氏縣數(shù)學(xué)九上期末聯(lián)考模擬試題含解析_第3頁
2024屆河南省尉氏縣數(shù)學(xué)九上期末聯(lián)考模擬試題含解析_第4頁
2024屆河南省尉氏縣數(shù)學(xué)九上期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆河南省尉氏縣數(shù)學(xué)九上期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,中,,,,則的長為()A. B. C.5 D.2.如圖,過反比例函數(shù)(x>0)的圖象上任意兩點A、B分別作x軸的垂線,垂足分別為C、D,連接OA、OB,設(shè)△AOC和△BOD的面積分別是S1、S2,比較它們的大小,可得()A.S1>S2 B.S1=S2 C.S1<S2 D.大小關(guān)系不能確定3.下列各式中,均不為,和成反比例關(guān)系的是()A. B. C. D.4.2019年教育部等九部門印發(fā)中小學(xué)生減負三十條:嚴控書面作業(yè)總量,初中家庭作業(yè)不超過90分鐘.某初中學(xué)校為了盡快落實減負三十條,了解學(xué)生做書面家庭作業(yè)的時間,隨機調(diào)查了40名同學(xué)每天做書面家庭作業(yè)的時間,情況如下表.下列關(guān)于40名同學(xué)每天做書面家庭作業(yè)的時間說法中,錯誤的是()書面家庭作業(yè)時間(分鐘)708090100110學(xué)生人數(shù)(人)472072A.眾數(shù)是90分鐘 B.估計全校每天做書面家庭作業(yè)的平均時間是89分鐘C.中位數(shù)是90分鐘 D.估計全校每天做書面家庭作業(yè)的時間超過90分鐘的有9人5.如圖,AB是⊙O的直徑,點C和點D是⊙O上位于直徑AB兩側(cè)的點,連接AC,AD,BD,CD,若⊙O的半徑是13,BD=24,則sin∠ACD的值是()A. B. C. D.6.反比例函數(shù)與正比例函數(shù)在同一坐標系中的大致圖象可能是()A. B.C. D.7.下列關(guān)系式中,是的反比例函數(shù)的是()A. B. C. D.8.如圖所示,在矩形中,,點在邊上,平分,,垂足為,則等于()A. B.1 C. D.29.對于反比例函數(shù),如果當≤≤時有最大值,則當≥8時,有()A.最大值 B.最小值 C.最大值= D.最小值=10.如圖,縮小后變?yōu)?,其中、的對?yīng)點分別為、,點、、、均在圖中格點上,若線段上有一點,則點在上對應(yīng)的點的坐標為()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,將矩形ABCD繞點C沿順時針方向旋轉(zhuǎn)90°到矩形A′B′CD′的位置,AB=2,AD=4,則陰影部分的面積為_____.12.已知cos(a-15°)=,那么a=____________13.化簡:-2a2+(a2-b2)=______.14.如圖,P是等邊三角形ABC內(nèi)一點,將線段BP繞點B逆時針旋轉(zhuǎn)60°得到線段BQ,連接AQ.若PA=4,PB=5,PC=3,則四邊形APBQ的面積為_______.15.等邊三角形中,,將繞的中點逆時針旋轉(zhuǎn),得到,其中點的運動路徑為,則圖中陰影部分的面積為__________.16.如圖,在平面直角坐標系中,菱形的邊在軸上,與交于點(4,2),反比例函數(shù)的圖象經(jīng)過點.若將菱形向左平移個單位,使點落在該反比例函數(shù)圖象上,則的值為_____________.17.已知學(xué)校航模組設(shè)計制作的火箭的升空高度h(m)與飛行時間t(s)滿足函數(shù)表達式,則火箭升空的最大高度是___m18.如圖,在Rt△ABC中,∠ABC=90°,BD⊥AC,垂足為點D,如果BC=4,sin∠DBC=,那么線段AB的長是_____.三、解答題(共66分)19.(10分)如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=-1,且經(jīng)過A(1,0),C(0,3)兩點,與x軸的另一個交點為B.(1)若直線y=mx+n經(jīng)過B,C兩點,求直線BC和拋物線的解析式;(2)在拋物線的對稱軸x=-1上找一點M,使點M到點A的距離與到點C的距離之和最小,求點M的坐標.20.(6分)拋物線y=﹣x2+x+b與x軸交于A、B兩點,與y軸交于點C.(1)若B點坐標為(2,0)①求實數(shù)b的值;②如圖1,點E是拋物線在第一象限內(nèi)的圖象上的點,求△CBE面積的最大值及此時點E的坐標.(2)如圖2,拋物線的對稱軸交x軸于點D,若拋物線上存在點P,使得P、B、C、D四點能構(gòu)成平行四邊形,求實數(shù)b的值.(提示:若點M,N的坐標為M(x?,y?),N(x?,y?),則線段MN的中點坐標為(,)21.(6分)今年“五?一”節(jié)期間,紅星商場舉行抽獎促銷活動,凡在本商場購物總金額在300元以上者,均可抽一次獎,獎品為精美小禮品.抽獎辦法是:在一個不透明的袋子中裝有四個標號分別為1,2,3,4的小球,它們的形狀、大小、質(zhì)地等完全相同.抽獎?wù)叩谝淮蚊鲆粋€小球,不放回,第二次再摸出一個小球,若兩次摸出的小球中有一個小球標號為“1”,則獲獎.(1)請你用樹形圖或列表法表示出抽獎所有可能出現(xiàn)的結(jié)果;(2)求抽獎人員獲獎的概率.22.(8分)(1)(學(xué)習(xí)心得)于彤同學(xué)在學(xué)習(xí)完“圓”這一章內(nèi)容后,感覺到一些幾何問題如果添加輔助圓,運用圓的知識解決,可以使問題變得非常容易.例如:如圖1,在中,,是外一點,且,求的度數(shù).若以點為圓心,為半徑作輔助,則、必在上,是的圓心角,而是圓周角,從而可容易得到=________.(2)(問題解決)如圖2,在四邊形中,,,求的度數(shù).(3)(問題拓展)如圖3,是正方形的邊上兩個動點,滿足.連接交于點,連接交于點,連接交于點,若正方形的邊長為2,則線段長度的最小值是_______.23.(8分)在中,,,,點從出發(fā)沿方向在運動速度為3個單位/秒,點從出發(fā)向點運動,速度為1個單位/秒,、同時出發(fā),點到點時兩點同時停止運動.(1)點在線段上運動,過作交邊于,時,求的值;(2)運動秒后,,求此時的值;(3)________時,.24.(8分)在下列網(wǎng)格圖中,每個小正方形的邊長均為個單位中,,且三點均在格點上.(1)畫出繞順時針方向旋轉(zhuǎn)后的圖形;(2)求點運動路徑的長(結(jié)果保留).25.(10分)如圖,在平面直角坐標系中,直線與軸交于點,與軸交于點且與反比例函數(shù)在第一象限的圖象交于點軸于點.根據(jù)函數(shù)圖象,直接寫出當反比例函數(shù)的函數(shù)值時,自變量的取值范圍;動點在軸上,軸交反比例函數(shù)的圖象于點.若.求點的坐標.26.(10分)“共和國勛章”是中華人民共和國的最高榮譽勛章,在2019年獲得“共和國勛章”的八位杰出人物中,有于敏、孫家棟、袁隆平、黃旭華四位院士.如圖是四位院士(依次記為、、、).為讓同學(xué)們了解四位院士的貢獻,老師設(shè)計如下活動:取四張完全相同的卡片,分別寫上、、、四個標號,然后背面朝上放置,攪勻后每個同學(xué)從中隨機抽取一張,記下標號后放回,老師要求每位同學(xué)依據(jù)抽到的卡片上的標號查找相應(yīng)院士的資料,并做成小報.(1)班長在四種卡片中隨機抽到標號為C的概率為______.(2)請用畫樹狀圖或列表的方法求小明和小華查找不同院士資料的概率.

參考答案一、選擇題(每小題3分,共30分)1、C【解析】過C作CD⊥AB于D,根據(jù)含30度角的直角三角形求出CD,解直角三角形求出AD,在△BDC中解直角三角形求出BD,相加即可求出答案.【詳解】過C作CD⊥AB于D,則∠ADC=∠BDC=90,∵∠A=30,AC=,∴CD=AC=,由勾股定理得:AD=CD=3,∵tanB==,∴BD=2,∴AB=2+3=5,故選C.【點睛】本題考查解直角三角形.2、B【分析】根據(jù)反比例函數(shù)的幾何意義,直接求出S1、S1的值即可進行比較.【詳解】由于A、B均在反比例函數(shù)的圖象上,且AC⊥x軸,BD⊥x軸,則S1=;S1=.故S1=S1.故選:B.【點睛】此題考查了反比例函數(shù)k的幾何意義,找到相關(guān)三角形,求出k的絕對值的一半即為三角形的面積.3、B【分析】判斷兩個相關(guān)聯(lián)的量之間成什么比例,就看這兩個量是對應(yīng)的比值一定,還是對應(yīng)的乘積一定;如果是比值一定,就成正比例;如果是乘積一定,則成反比例.【詳解】解:A.,則,x和y不成比例;B.,即7yx=5,是比值一定,x和y成反比例;C.,x和y不成比例;D.,即y:x=5:8,是比值一定,x和y成正比例.故選B.【點睛】此題屬于根據(jù)正、反比例的意義,辨識兩種相關(guān)聯(lián)的量是否成反比例,就看這兩種量是否是對應(yīng)的乘積一定,再做出選擇.4、D【分析】利用眾數(shù)、中位數(shù)及平均數(shù)的定義分別確定后即可得到本題的正確的選項.【詳解】解:A、書面家庭作業(yè)時間為90分鐘的有20人,最多,故眾數(shù)為90分鐘,正確;B、共40人,中位數(shù)是第20和第21人的平均數(shù),即=90,正確;C、平均時間為:×(70×4+80×7+90×20+100×8+110)=89,正確;D、隨機調(diào)查了40名同學(xué)中,每天做書面家庭作業(yè)的時間超過90分鐘的有8+1=9人,故估計全校每天做書面家庭作業(yè)的時間超過90分鐘的有9人說法錯誤,故選:D.【點睛】本題考查了眾數(shù)、中位數(shù)及平均數(shù)的定義,屬于統(tǒng)計基礎(chǔ)題,比較簡單.5、D【解析】首先利用直徑所對的圓周角為90°得到△ABD是直角三角形,然后利用勾股定理求得AD邊的長,然后求得∠B的正弦即可求得答案.【詳解】∵AB是直徑,∴∠ADB=90°,∵⊙O的半徑是13,∴AB=2×13=26,由勾股定理得:AD=10,∴sin∠B=∵∠ACD=∠B,∴sin∠ACD=sin∠B=,故選D.【點睛】本題考查了圓周角定理及解直角三角形的知識,解題的關(guān)鍵是能夠得到直角三角形并利用銳角三角函數(shù)求得一個銳角的正弦值,難度不大.6、A【分析】分a>0和a<0兩種情況,根據(jù)反比例函數(shù)與正比例函數(shù)的圖象的性質(zhì)判斷即可.【詳解】解:當a>0時,反比例函數(shù)圖象在一、三象限,正比例函數(shù)圖象經(jīng)過一、二、三象限;當a<0,反比例函數(shù)圖象在二、四象限,正比例函數(shù)圖象經(jīng)過二、三、四象限.故選:A.【點睛】本題考查的知識點是反比例函數(shù)與正比例函數(shù)圖象的性質(zhì),熟記性質(zhì)內(nèi)容是解此題的關(guān)鍵.7、C【解析】根據(jù)反比例函數(shù)的定義逐一判斷即可.【詳解】解:A、是正比例函數(shù),故A錯誤;

B、是正比例函數(shù),故B錯誤;

C、是反比例函數(shù),故C正確;

D、是二次函數(shù),故D錯誤;

故選:C.【點睛】本題考查了反比例函數(shù)的定義,形如y=(k≠0)的函數(shù)是反比例函數(shù).正確理解反比例函數(shù)解析式是解題的關(guān)鍵.8、C【分析】利用矩形的性質(zhì)、全等的性質(zhì)結(jié)合方程與勾股定理計算即可得出答案.【詳解】根據(jù)矩形的性質(zhì)可得,∠D=90°又EF⊥AE∴∠AEF=90°∴∵AF平分∠DAE∴∠EAF=∠DAF在△AEF和△ADF中∴△AEF≌△ADF∴AE=AD=BC=5,DF=EF在RT△ABE中,∴EC=BC-BE=2設(shè)DF=EF=x,則CF=4-x在RT△CEF中,即解得:x=∴故答案選擇C.【點睛】本題考查的是矩形的綜合,難度適中,解題關(guān)鍵是利用全等證出△AEF≌△ADF.9、D【解析】解:由當時有最大值,得時,,,反比例函數(shù)解析式為,當時,圖象位于第四象限,隨的增大而增大,當時,最小值為故選D.10、D【分析】根據(jù)A,B兩點坐標以及對應(yīng)點C,D點的坐標得出坐標變化規(guī)律,進而得出P′的坐標.【詳解】解:∵△ABO縮小后變?yōu)椤鰿DO,其中A、B的對應(yīng)點分別為C、D,點A、B、C、D均在圖中在格點上,即A點坐標為:(4,6),B點坐標為:(6,2),C點坐標為:(2,3),D點坐標為:(3,1),∴線段AB上有一點P(m,n),則點P在CD上的對應(yīng)點P′的坐標為:().故選D.【點睛】此題主要考查了點的坐標的確定,位似圖形的性質(zhì),根據(jù)已知得出對應(yīng)點坐標的變化是解題關(guān)鍵.二、填空題(每小題3分,共24分)11、【解析】試題解析:連接∵四邊形ABCD是矩形,∴CE=BC=4,∴CE=2CD,由勾股定理得:∴陰影部分的面積是S=S扇形CEB′?S△CDE故答案為12、45°【分析】由題意直接利用特殊角的三角函數(shù)值,進行分析計算進而得出答案.【詳解】解:∵,∴a-15°=30°,∴a=45°.故答案為:45°.【點睛】本題主要考查特殊角的三角函數(shù)值,牢記是特殊角的三角函數(shù)值解題的關(guān)鍵.13、-a2-b2【分析】去括號合并同類項即可.【詳解】原式=-2a2+a2-b2=-a2-b2.故答案為:-a2-b2.【點睛】本題考查了整式的加減,即去括號合并同類項.去括號法則:當括號前是“+”號時,去掉括號和前面的“+”號,括號內(nèi)各項的符號都不變號;當括號前是“-”號時,去掉括號和前面的“-”號,括號內(nèi)各項的符號都要變號.14、【分析】由旋轉(zhuǎn)的性質(zhì)可得△BPQ是等邊三角形,由全等三角形的判定可得△ABQ≌△CBP(SAS),由勾股定理的逆定理可得△APQ是直角三角形,求四邊形的面積轉(zhuǎn)化為求兩個特殊三角形的面積即可.【詳解】解:連接PQ,由旋轉(zhuǎn)的性質(zhì)可得,BP=BQ,又∵∠PBQ=60°,∴△BPQ是等邊三角形,∴PQ=BP,在等邊三角形ABC中,∠CBA=60°,AB=BC,∴∠ABQ=60°-∠ABP∠CBP=60°-∠ABP∴∠ABQ=∠CBP在△ABQ與△CBP中,∴△ABQ≌△CBP(SAS),∴AQ=PC,又∵PA=4,PB=5,PC=3,∴PQ=BP=5,PC=AQ=3,在△APQ中,因為,25=16+9,∴由勾股定理的逆定理可知△APQ是直角三角形,∴,故答案為:【點睛】本題主要考查了旋轉(zhuǎn)的性質(zhì)、全等三角形的判定、勾股定理的逆定理及特殊三角形的面積,解題的關(guān)鍵是作出輔助線,轉(zhuǎn)化為特殊三角形進行求解.15、【分析】先利用勾股定理求出OB,再根據(jù),計算即可.【詳解】解:在等邊三角形中,O為的中點,∴OB⊥OC,,∴∠BOC=90°∴∵將繞的中點逆時針旋轉(zhuǎn),得到∴∴三點共線∴故答案為:【點睛】本題考查旋轉(zhuǎn)變換、扇形面積公式,三角形的面積公式,以及勾股定理等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.16、1【分析】根據(jù)菱形的性質(zhì)得出CD=AD,BC∥OA,根據(jù)D

(4,2)和反比例函數(shù)的圖象經(jīng)過點D求出k=8,C點的縱坐標是2×2=4,求出C的坐標,即可得出答案.【詳解】∵四邊形ABCO是菱形,∴CD=AD,BC∥OA,∵D

(4,2),反比例函數(shù)的圖象經(jīng)過點D,∴k=8,C點的縱坐標是2×2=4,∴,把y=4代入得:x=2,∴n=3?2=1,∴向左平移1個單位長度,反比例函數(shù)能過C點,故答案為1.【點睛】本題主要考查了反比例函數(shù)圖象上點的坐標特征,菱形的性質(zhì),坐標與圖形變化-平移,數(shù)形結(jié)合思想是關(guān)鍵.17、1【分析】將函數(shù)解析式配方,寫成頂點式,按照二次函數(shù)的性質(zhì)可得答案.【詳解】解:∵==,∵,∴拋物線開口向下,當x=6時,h取得最大值,火箭能達到最大高度為1m.故答案為:1.【點睛】本題考查了二次函數(shù)的應(yīng)用,熟練掌握配方法及二次函數(shù)的性質(zhì),是解題的關(guān)鍵.18、2.【分析】在中,根據(jù)直角三角形的邊角關(guān)系求出CD,根據(jù)勾股定理求出BD,在在中,再求出AB即可.【詳解】解:在Rt△BDC中,∵BC=4,sin∠DBC=,∴,∴,∵∠ABC=90°,BD⊥AC,∴∠A=∠DBC,在Rt△ABD中,∴,故答案為:2.【點睛】考查直角三角形的邊角關(guān)系,勾股定理等知識,在不同的直角三角形中利用合適的邊角關(guān)系式正確解答的關(guān)鍵.三、解答題(共66分)19、(1)y=-x2-2x+3,y=x+3;(2)M(-1,2).【解析】試題分析:(1)根據(jù)題意得出關(guān)于a、b、c的方程組,求得a、b、c的值,即可得出拋物線的解析式,根據(jù)拋物線的對稱性得出點B的坐標,再設(shè)出直線BC的解析式,把點B、C的坐標代入即可得出直線BC的解析式;(2)點A關(guān)于對稱軸的對稱點為點B,連接BC,設(shè)直線BC與對稱軸x=-1的交點為M,則此時MA+MC的值最小,再求得點M的坐標.試題解析:(1)依題意得:,解之得:,∴拋物線解析式為y=-x2-2x+3,∵對稱軸為x=-1,且拋物線經(jīng)過A(1,0),∴B(-3,0),∴把B(-3,0)、C(0,3)分別代入直線y=mx+n,得,解得:,∴直線y=mx+n的解析式為y=x+3;(2)設(shè)直線BC與對稱軸x=-1的交點為M,則此時MA+MC的值最?。褁=-1代入直線y=x+3得,y=2∴M(-1,2).即當點M到點A的距離與到點C的距離之和最小時M的坐標為(-1,2).考點:1.拋物線與x軸的交點;2.軸對稱-最短路線問題.20、(1)①b=2;②△CBE面積的最大值為1,此時E(1,2);(2)b=﹣1+或b=,(,)【分析】(1)①將點B(2,0)代入y=﹣x2+x+b即可求b;②設(shè)E(m,﹣m2+m+2),求出BC的直線解析式為y=﹣x+2,和過點E與BC垂直的直線解析式為y=x﹣m2+2,求出兩直線交點F,則EF最大時,△CBE面積的最大;(2)可求C(0,b),B(,0),設(shè)M(t,﹣t2+t+b),利用對角線互相平分的四邊形是平行四邊形,則分三種情況求解:①當CM和BD為平行四邊形的對角線時,=,=0,解得b=﹣1+;②當BM和CD為平行四邊形的對角線時,=,=,b無解;③當BC和MD為平行四邊形的對角線時,=,=,解得b=或b=﹣(舍).【詳解】解:(1)①將點B(2,0)代入y=﹣x2+x+b,得到0=﹣4+2+b,∴b=2;②C(0,2),B(2,0),∴BC的直線解析式為y=﹣x+2,設(shè)E(m,﹣m2+m+2),過點E與BC垂直的直線解析式為y=x﹣m2+2,∴直線BC與其垂線的交點為F(,﹣+2),∴EF=(﹣+2)=[﹣(m﹣1)2+],當m=1時,EF有最大值,∴S=×BC×EF=×2×=1,∴△CBE面積的最大值為1,此時E(1,2);(2)∵拋物線的對稱軸為x=,∴D(,0),∵函數(shù)與x軸有兩個交點,∴△=1+4b>0,∴b>﹣,∵C(0,b),B(,0),設(shè)M(t,﹣t2+t+b),①當CM和BD為平行四邊形的對角線時,C、M的中點為(,),B、D的中點為(,0),∴=,=0,解得:b=﹣1+或b=﹣1﹣(舍去),∴b=﹣1+;②當BM和CD為平行四邊形的對角線時,B、M的中點為(,),C、D的中點為(,),∴=,=,∴b無解;③當BC和MD為平行四邊形的對角線時,B、C的中點為(,),M、D的中點為(,),∴=,=,解得:b=或b=﹣(舍);綜上所述:b=﹣1+或b=.【點睛】本題考查二次函數(shù)的綜合;熟練掌握二次函數(shù)的圖象及性質(zhì),熟練應(yīng)用平行四邊形的判定方法是解題的關(guān)鍵.21、(1)詳見解析(2)12【解析】試題分析:(1)根據(jù)列表法與畫樹狀圖的方法畫出即可。(2)根據(jù)概率公式列式計算即可得解。解:(1)畫樹狀圖表示如下:抽獎所有可能出現(xiàn)的結(jié)果有12種。(2)∵由(1)知,抽獎所有可能出現(xiàn)的結(jié)果共有12種,這些結(jié)果出現(xiàn)的可能性相等,其中有一個小球標號為“1”的有6種,∴抽獎人員的獲獎概率為P=622、(1)45;(2)25°;(3)【解析】(1)利用同弦所對的圓周角是所對圓心角的一半求解.(2)由A、B、C、D共圓,得出∠BDC=∠BAC,(3)根據(jù)正方形的性質(zhì)可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“邊角邊”證明△ABE和△DCF全等,根據(jù)全等三角形對應(yīng)角相等可得∠1=∠2,利用“SAS”證明△ADG和△CDG全等,根據(jù)全等三角形對應(yīng)角相等可得∠2=∠3,從而得到∠1=∠3,然后求出∠AHB=90°,取AB的中點O,連接OH、OD,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得OH=AB=1,利用勾股定理列式求出OD,然后根據(jù)三角形的三邊關(guān)系可知當O、D、H三點共線時,DH的長度最小.【詳解】(1)如圖1,∵AB=AC,AD=AC,∴以點A為圓心,點B、C、D必在⊙A上,∵∠BAC是⊙A的圓心角,而∠BDC是圓周角,∴∠BDC=∠BAC=45°,故答案是:45;(2)如圖2,取BD的中點O,連接AO、CO.∵∠BAD=∠BCD=90°,∴點A、B、C、D共圓,∴∠BDC=∠BAC,∵∠BDC=25°,∴∠BAC=25°;(3)在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°?90°=90°,取AB的中點O,連接OH、OD,則OH=AO=AB=1,在Rt△AOD中,OD=,根據(jù)三角形的三邊關(guān)系,OH+DH>OD,∴當O、D、H三點共線時,DH的長度最小,最小值=OD?OH=?1.【點睛】本題主要考查了圓的綜合題,需要掌握垂徑定理、圓周角定理、等腰直角三角形的性質(zhì)以及勾股定理等知識,難度偏大,解題時,注意輔助線的作法.23、(1)2;(2)或;(3)【分析】(1)如圖1中,作于,于,利用勾股定理求出AC=10,根據(jù),得到,求出,,,證明四邊形是矩形,得到,證明,得到;(2)作于,根據(jù),得到,求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論