版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆山西省汾陽市汾陽中學(xué)高一數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表:廣告費用(萬元)
4
2
3
5
銷售額(萬元)
49
26
39
54
根據(jù)上表可得回歸方程中的為9.4,據(jù)此模型預(yù)報廣告費用為6萬元時銷售額為A.63.6萬元 B.65.5萬元 C.67.7萬元 D.72.0萬元2.已知函數(shù),則不等式的解集是()A. B. C. D.3.已知四面體中,,分別是,的中點,若,,與所成角的度數(shù)為30°,則與所成角的度數(shù)為()A.90° B.45° C.60° D.30°4.等差數(shù)列{an}中,若S1=1A.2019 B.1 C.1009 D.10105.在5張電話卡中,有3張移動卡和2張聯(lián)通卡,從中任取2張,若事件“2張全是移動卡”的概率是,那么概率是的事件是()A.2張恰有一張是移動卡 B.2張至多有一張是移動卡C.2張都不是移動卡 D.2張至少有一張是移動卡6.設(shè)是兩條不同的直線,是兩個不同的平面,則下列敘述正確的是()①若,則;②若,則;③若,則;④若,則.A.①② B.③④ C.①③ D.②④7.若直線:與直線:平行,則的值為()A.1 B.1或2 C.-2 D.1或-28.在中,,,,則=()A. B.C. D.9.設(shè)x、y滿足約束條件,則z=2x﹣y的最大值為()A.0 B.0.5 C.1 D.210.已知正四棱錐的底面邊長為2,側(cè)棱長為,則該正四棱錐的體積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則的最小值為_______.12.計算:__________.13.若直線與直線互相平行,那么a的值等于_____.14.某產(chǎn)品分為優(yōu)質(zhì)品、合格品、次品三個等級,生產(chǎn)中出現(xiàn)合格品的概率為0.25,出現(xiàn)次品的概率為0.03,在該產(chǎn)品中任抽一件,則抽到優(yōu)質(zhì)品的概率為__________.15.已知向量、滿足,,且,則與的夾角為________.16.已知,,那么的值是________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知向量,.(1)若,求的值.(2)記,在中,滿足,求函數(shù)的取值范圍.18.如圖所示,某住宅小區(qū)的平面圖是圓心角為120°的扇形,小區(qū)的兩個出入口設(shè)置在點及點處,且小區(qū)里有一條平行于的小路,已知某人從沿走到用了10分鐘,從沿走到用了6分鐘,若此人步行的速度為每分鐘50米,求該扇形的半徑的長.19.如圖,在中,,D是BC邊上的一點,,,.(1)求的大?。唬?)求邊的長.20.在中,內(nèi)角所對的邊分別為.已知,.(I)求的值;(II)求的值.21.已知正方形的中心為,一條邊所在直線的方程是.(1)求該正方形中與直線平行的另一邊所在直線的方程;(2)求該正方形中與直線垂直的一邊所在直線的方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】
試題分析:,∵數(shù)據(jù)的樣本中心點在線性回歸直線上,回歸方程中的為1.4,∴42=1.4×2.5+a,∴=1.1,∴線性回歸方程是y=1.4x+1.1,∴廣告費用為6萬元時銷售額為1.4×6+1.1=3.5考點:線性回歸方程2、A【解題分析】
分別考慮即時;即時,原不等式的解集,最后求出并集?!绢}目詳解】當(dāng)即時,,則等價于,即,解得:,當(dāng)即時,,則等價于,即,所以,綜述所述,原不等式的解集為故答案選A【題目點撥】本題考查分段函數(shù)的應(yīng)用,一元二次不等式的解集,屬于基礎(chǔ)題。3、A【解題分析】
取的中點,利用三角形中位線定理,可以得到,與所成角為,運用三角形中位線定理和正弦定理,可以求出的大小,也就能求出與所成角的度數(shù).【題目詳解】取的中點連接,如下圖所示:因為,分別是,的中點,所以有,因為與所成角的度數(shù)為30°,所以,與所成角的大小等于的度數(shù).在中,,故本題選A.【題目點撥】本題考查了異面直線所成角的求法,考查了正弦定理,取中點利用三角形中位線定理是解題的關(guān)鍵.4、D【解題分析】
由等差數(shù)列{an}中,S1=1,S【題目詳解】∵等差數(shù)列{an}中,S∴S即15=5+10d,解得d=1,∴S故選:D.【題目點撥】本題考查等差數(shù)列基本量的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.5、B【解題分析】
概率的事件可以認為是概率為的對立事件.【題目詳解】事件“2張全是移動卡”的概率是,它的對立事件的概率是,事件為“2張不全是移動卡”,也即為“2張至多有一張是移動卡”.故選B.【題目點撥】本題考查對立事件,解題關(guān)鍵是掌握對立事件的概率性質(zhì):即對立事件的概率和為1.6、D【解題分析】可以線在平面內(nèi),③可以是兩相交平面內(nèi)與交線平行的直線,②對④對,故選D.7、A【解題分析】試題分析:因為直線:與直線:平行,所以或-2,又時兩直線重合,所以.考點:兩條直線平行的條件.點評:此題是易錯題,容易選C,其原因是忽略了兩條直線重合的驗證.8、C【解題分析】
根據(jù)正弦定理,代入即可求解.【題目詳解】因為中,,,由正弦定理可知代入可得故選:C【題目點撥】本題考查了正弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.9、C【解題分析】
由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【題目詳解】由約束條件作出可行域如圖,聯(lián)立,解得A(2,3),化目標(biāo)函數(shù)z=2x﹣y為y=2x﹣z,由圖可知,當(dāng)直線y=2x﹣z過A時,直線在y軸上的截距最小,z有最大值為2×2﹣3=1.故選:C.【點評】本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是中檔題.10、D【解題分析】
求出正四棱錐的高后可求其體積.【題目詳解】正四棱錐底面的對角線的長度為,故正四棱錐的高為,所以體積為,故選D.【題目點撥】正棱錐中,棱錐的高、斜高、側(cè)棱和底面外接圓的半徑可構(gòu)成四個直角三角形,它們溝通了棱錐各個幾何量之間的關(guān)系,解題中注意利用它們實現(xiàn)不同幾何量之間的聯(lián)系.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
運用基本不等式求出結(jié)果.【題目詳解】因為,所以,,所以,所以最小值為【題目點撥】本題考查了基本不等式的運用求最小值,需要滿足一正二定三相等.12、【解題分析】
分子分母同除以,即可求出結(jié)果.【題目詳解】因為.故答案為【題目點撥】本題主要考查“”型的極限計算,熟記常用做法即可,屬于基礎(chǔ)題型.13、;【解題分析】由題意得,驗證滿足條件,所以14、0.72【解題分析】
根據(jù)對立事件的概率公式即可求解.【題目詳解】由題意,在該產(chǎn)品中任抽一件,“抽到優(yōu)質(zhì)品”與“抽到合格品或次品”是對立事件,所以在該產(chǎn)品中任抽一件,則抽到優(yōu)質(zhì)品的概率為.故答案為【題目點撥】本題主要考查對立事件的概率公式,熟記對立事件的概念及概率計算公式即可求解,屬于基礎(chǔ)題型.15、【解題分析】
直接應(yīng)用數(shù)量積的運算,求出與的夾角.【題目詳解】設(shè)向量、的夾角為;∵,∴,∵,∴.故答案為:.【題目點撥】本題考查向量的夾角計算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,屬于基礎(chǔ)題.16、【解題分析】
首先根據(jù)題中條件求出角,然后代入即可.【題目詳解】由題知,,所以,故.故答案為:.【題目點撥】本題考查了特殊角的三角函數(shù)值,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】
(1)求出數(shù)量積,由二倍角公式和兩角和的正弦公式化簡,求出,然后結(jié)合誘導(dǎo)公式和余弦的二倍角公式可求值;(2)應(yīng)用兩角和的正弦公式可求得,得有范圍,由(1)的結(jié)論得,即其范圍.【題目詳解】(1)由題意,,.(2)由(1),由得,三角形中,∴,.則,,∴.【題目點撥】本題考查平面向量數(shù)量積的坐標(biāo)表示,考查兩角和正弦公式,二倍角公式,考查三角函數(shù)的性質(zhì).解題中利用三角公式化簡變形是解題關(guān)鍵,本題屬于中檔題.18、【解題分析】
連接,由題意,得米,米,,在△中,由余弦定理可得答案.【題目詳解】設(shè)該扇形的半徑為米,連接,如圖所示:由題意,得米,米,,在△中,由余弦定理得,即,解得米.答:該扇形的半徑的長為米.【題目點撥】本題考查了利用余弦定理解三角形,將問題轉(zhuǎn)化為在三角形中求解是解題關(guān)鍵,屬于基礎(chǔ)題.19、(1)(2)【解題分析】
(1)在中,由余弦定理運算即可;(2)在中,由正弦定理運算即可.【題目詳解】解:(1)在中,,,,由余弦定理可得,又,即;(2)由(1)得,在中,,,由正弦定理可得:,即.【題目點撥】本題考查了正弦定理、余弦定理的應(yīng)用,屬基礎(chǔ)題.20、(Ⅰ)(Ⅱ)【解題分析】試題分析:利用正弦定理“角轉(zhuǎn)邊”得出邊的關(guān)系,再根據(jù)余弦定理求出,進而得到,由轉(zhuǎn)化為,求出,進而求出,從而求出的三角函數(shù)值,利用兩角差的正弦公式求出結(jié)果.試題解析:(Ⅰ)解:由,及,得.由,及余弦定理,得.(Ⅱ)解:由(Ⅰ),可得,代入,得.由(Ⅰ)知,A為鈍角,所以.于是,,故.考點:正弦定理、余弦定理、解三角形【名師點睛】利用正弦定理進行“邊轉(zhuǎn)角”尋求角的關(guān)系,利用“角轉(zhuǎn)邊”尋求邊的關(guān)系,利用余弦定理借助三邊關(guān)系求角,利用兩角和差公式及二倍角公式求三角函數(shù)值.利用正、余弦定理解三角形問題是高考高頻考點,經(jīng)常利用三角形內(nèi)角和定理,三角形面積公式,結(jié)合正、余弦定理解題.21、(1);(2)或.【解題分析】
(1)由直線平行則斜率相等,設(shè)出所求直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 年度B2B電子商務(wù)戰(zhàn)略市場規(guī)劃報告
- 年度高分子復(fù)合材料競爭策略分析報告
- 2025個人公司股權(quán)轉(zhuǎn)讓合同范本:股權(quán)分割與權(quán)益調(diào)整4篇
- 2024離婚財產(chǎn)分割協(xié)議公證與遺產(chǎn)分割
- 2024蔬菜大棚溫室租賃與農(nóng)業(yè)科技研發(fā)服務(wù)合同3篇
- 課程設(shè)計要不要上課呢
- 《電子商務(wù)概論》課件
- 增加頂管施工方案
- 二零二五版民法典離婚協(xié)議書樣本與專業(yè)律師服務(wù)協(xié)議4篇
- 2025年暑期學(xué)生兼職工作質(zhì)量及效果評估協(xié)議3篇
- 2025年中國重汽集團招聘筆試參考題庫含答案解析
- 教師招聘(教育理論基礎(chǔ))考試題庫(含答案)
- 2024年秋季學(xué)期學(xué)校辦公室工作總結(jié)
- 鋪大棚膜合同模板
- 長亭送別完整版本
- 智能養(yǎng)老院視頻監(jiān)控技術(shù)方案
- 你比我猜題庫課件
- 無人駕駛航空器安全操作理論復(fù)習(xí)測試附答案
- 建筑工地春節(jié)留守人員安全技術(shù)交底
- 默納克-NICE1000技術(shù)交流-V1.0
- 蝴蝶蘭的簡介
評論
0/150
提交評論