2024屆江蘇省江陰市暨陽中學(xué)高一數(shù)學(xué)第二學(xué)期期末達標檢測模擬試題含解析_第1頁
2024屆江蘇省江陰市暨陽中學(xué)高一數(shù)學(xué)第二學(xué)期期末達標檢測模擬試題含解析_第2頁
2024屆江蘇省江陰市暨陽中學(xué)高一數(shù)學(xué)第二學(xué)期期末達標檢測模擬試題含解析_第3頁
2024屆江蘇省江陰市暨陽中學(xué)高一數(shù)學(xué)第二學(xué)期期末達標檢測模擬試題含解析_第4頁
2024屆江蘇省江陰市暨陽中學(xué)高一數(shù)學(xué)第二學(xué)期期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆江蘇省江陰市暨陽中學(xué)高一數(shù)學(xué)第二學(xué)期期末達標檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,在矩形中,,,點滿足,記,,,則的大小關(guān)系為()A. B.C. D.2.在中,已知是邊上一點,,,則等于()A. B. C. D.3.在學(xué)習(xí)等差數(shù)列時,我們由,,,,得到等差數(shù)列的通項公式是,象這樣由特殊到一般的推理方法叫做()A.不完全歸納法 B.數(shù)學(xué)歸納法 C.綜合法 D.分析法4.在等差數(shù)列{an}中,若a1+A.8 B.16 C.20 D.285.在等差數(shù)列中,,則數(shù)列前項和取最大值時,的值等于()A.12 B.11 C.10 D.96..設(shè)、是關(guān)于x的方程的兩個不相等的實數(shù)根,那么過兩點,的直線與圓的位置關(guān)系是()A.相離. B.相切. C.相交. D.隨m的變化而變化.7.下列各數(shù)中最小的數(shù)是()A. B. C. D.8.如圖所示:在正方體中,設(shè)直線與平面所成角為,二面角的大小為,則為()A. B. C. D.9.如圖:樣本A和B分別取自兩個不同的總體,他們的樣本平均數(shù)分別為和,樣本標準差分別為和,則()A.B.C.D.10.已知直線l的方程為2x+3y=5,點P(a,b)在l上位于第一象限內(nèi)的點,則的最小值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.某公司調(diào)查了商品的廣告投入費用(萬元)與銷售利潤(萬元)的統(tǒng)計數(shù)據(jù),如下表:廣告費用(萬元)銷售利潤(萬元)由表中的數(shù)據(jù)得線性回歸方程為,則當時,銷售利潤的估值為___.(其中:)12.如圖,緝私艇在處發(fā)現(xiàn)走私船在方位角且距離為12海里的處正以每小時10海里的速度沿方位角的方向逃竄,緝私艇立即以每小時14海里的速度追擊,則緝私艇追上走私船所需要的時間是__________小時.13.某奶茶店的日銷售收入y(單位:百元)與當天平均氣溫x(單位:)之間的關(guān)系如下:x012y5221通過上面的五組數(shù)據(jù)得到了x與y之間的線性回歸方程:;但現(xiàn)在丟失了一個數(shù)據(jù),該數(shù)據(jù)應(yīng)為____________.14.如圖所示,已知點,單位圓上半部分上的點滿足,則向量的坐標為________.15.計算:______.16.己知函數(shù),有以下結(jié)論:①的圖象關(guān)于直線軸對稱②在區(qū)間上單調(diào)遞減③的一個對稱中心是④的最大值為則上述說法正確的序號為__________(請?zhí)钌纤姓_序號).三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知.(1)解關(guān)于的不等式;(2)若不等式的解集為,求實數(shù),的值.18.已知.(I)若函數(shù)有三個零點,求實數(shù)的值;(II)若對任意,均有恒成立,求實數(shù)的取值范圍.19.已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個底邊長為、高為的等腰三角形,側(cè)視圖是一個底邊長為、高為的等腰三角形.(1)求該幾何體的體積V;(2)求該幾何體的側(cè)面積S.20.在相同條件下對自行車運動員甲?乙兩人進行了6次測試,測得他們的最大速度(單位:)的數(shù)據(jù)如下:甲273830373531乙332938342836試判斷選誰參加某項重大比賽更合適.21.如圖,在三棱柱中,、分別是棱,的中點,求證:(1)平面;(2)平面平面.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】

可建立合適坐標系,表示出a,b,c的大小,運用作差法比較大小.【題目詳解】以為圓心,以所在直線為軸、軸建立坐標系,則,,,設(shè),則,,,,,,,,故選C.【題目點撥】本題主要考查學(xué)生的建模能力,意在考查學(xué)生的理解能力及分析能力,難度中等.2、A【解題分析】

利用向量的減法將3,進行分解,然后根據(jù)條件,進行對比即可得到結(jié)論【題目詳解】∵3,∴33,即43,則,∵λ,∴λ,故選A.【題目點撥】本題主要考查向量的基本定理的應(yīng)用,根據(jù)向量的減法法則進行分解是解決本題的關(guān)鍵.3、A【解題分析】

根據(jù)題干中的推理由特殊到一般的推理屬于歸納推理,但又不是數(shù)學(xué)歸納法,從而可得出結(jié)果.【題目詳解】本題由前三項的規(guī)律猜想出一般項的特點屬于歸納法,但本題并不是數(shù)學(xué)歸納法,因此,本題中的推理方法是不完全歸納法,故選:A.【題目點撥】本題考查歸納法的特點,判斷時要區(qū)別數(shù)學(xué)歸納法與不完全歸納法,考查對概念的理解,屬于基礎(chǔ)題.4、C【解題分析】

因為an則a1所以a5故選C.5、C【解題分析】試題分析:最大,考點:數(shù)列單調(diào)性點評:求解本題的關(guān)鍵是由已知得到數(shù)列是遞減數(shù)列,進而轉(zhuǎn)化為尋找最小的正數(shù)項6、D【解題分析】直線AB的方程為.即,所以直線AB的方程為,因為,所以,所以,所以直線AB與圓可能相交,也可能相切,也可能相離.7、D【解題分析】

將選項中的數(shù)轉(zhuǎn)化為十進制的數(shù),由此求得最小值的數(shù).【題目詳解】依題意,,,,故最小的為D.所以本小題選D.【題目點撥】本小題主要考查不同進制的數(shù)比較大小,屬于基礎(chǔ)題.8、A【解題分析】

連結(jié)BC1,交B1C于O,連結(jié)A1O,則∠BA1O是直線A1B與平面A1DCB1所成角θ1,由BC⊥DC,B1C⊥DC,知∠BCB1是二面角A1﹣DC﹣A的大小θ2,由此能求出結(jié)果.【題目詳解】連結(jié)BC1,交B1C于O,連結(jié)A1O,∵在正方體ABCD﹣A1B1C1D1中,BC1⊥B1C,BC1⊥DC,∴BO⊥平面A1DCB1,∴∠BA1O是直線A1B與平面A1DCB1所成角θ1,∵BO=A1B,∴θ1=30°;∵BC⊥DC,B1C⊥DC,∴∠BCB1是二面角A1﹣DC﹣A的大小θ2,∵BB1=BC,且BB1⊥BC,∴θ2=45°.故選A.【題目點撥】本題考查線面角、二面角的求法,解題時要認真審題,注意空間思維能力的培養(yǎng),屬于中檔題.9、B【解題分析】

從圖形中可以看出樣本A的數(shù)據(jù)均不大于10,而樣本B的數(shù)據(jù)均不小于10,A中數(shù)據(jù)波動程度較大,B中數(shù)據(jù)較穩(wěn)定,由此得到結(jié)論.【題目詳解】∵樣本A的數(shù)據(jù)均不大于10,而樣本B的數(shù)據(jù)均不小于10,,由圖可知A中數(shù)據(jù)波動程度較大,B中數(shù)據(jù)較穩(wěn)定,.故選B.10、C【解題分析】

由題意可得2a+3b=5,a,b>0,可得4a=10﹣6b,(3b<5),將所求式子化為b的關(guān)系式,由基本不等式可得所求最小值.【題目詳解】直線l的方程為2x+3y=5,點P(a,b)在l上位于第一象限內(nèi)的點,可得2a+3b=5,a,b>0,可得4a=10﹣6b,(3b<5),則[(11﹣6b)+(9+6b)]()(7),當且僅當時,即b,a,上式取得最小值,故選:C.【點評】本題考查基本不等式的運用:求最值,考查變形能力和化簡運算能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、12.2【解題分析】

先求出,的平均數(shù),再由題中所給公式計算出和,進而得出線性回歸方程,將代入,即可求出結(jié)果.【題目詳解】由題中數(shù)據(jù)可得:,,所以,所以,故回歸直線方程為,所以當時,【題目點撥】本題主要考查線性回歸方程,需要考生掌握住最小二乘法求與,屬于基礎(chǔ)題型.12、【解題分析】

設(shè)緝私艇追上走私船所需要的時間為小時,根據(jù)各自的速度表示出與,由,利用余弦定理列出關(guān)于的方程,求出方程的解即可得到的值.【題目詳解】解:設(shè)緝私艇上走私船所需要的時間為小時,則,,在中,,根據(jù)余弦定理知:,或(舍去),故緝私艇追上走私船所需要的時間為2小時.故答案為:.【題目點撥】本題考查了正弦、余弦定理,以及特殊角的三角函數(shù)值,熟練掌握正弦、余弦定理是解本題的關(guān)鍵,屬于中檔題.13、4【解題分析】

根據(jù)回歸直線經(jīng)過數(shù)據(jù)的中心點可求.【題目詳解】設(shè)丟失的數(shù)據(jù)為,則,,把代入回歸方程可得,故答案為:4.【題目點撥】本題主要考查回歸直線的特征,明確回歸直線一定經(jīng)過樣本數(shù)據(jù)的中心點是求解本題的關(guān)鍵,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).14、【解題分析】

設(shè)點,由和列方程組解出、的值,可得出向量的坐標.【題目詳解】設(shè)點的坐標為,則,由,得,解得,因此,,故答案為.【題目點撥】本題考查向量的坐標運算,解題時要將一些條件轉(zhuǎn)化為與向量坐標相關(guān)的等式,利用方程思想進行求解,考查運算求解能力,屬于中等題.15、【解題分析】

在分式的分子和分母中同時除以,然后利用常見的數(shù)列極限可計算出所求極限值.【題目詳解】.故答案為:.【題目點撥】本題考查數(shù)列極限的計算,熟悉一些常見數(shù)列極限是解題的關(guān)鍵,考查計算能力,屬于基礎(chǔ)題.16、②④【解題分析】

根據(jù)三角函數(shù)性質(zhì),逐一判斷選項得到答案.【題目詳解】,根據(jù)圖像知:①的圖象關(guān)于直線軸對稱,錯誤②在區(qū)間上單調(diào)遞減,正確③的一個對稱中心是,錯誤④的最大值為,正確故答案為②④【題目點撥】本題考查了三角函數(shù)的化簡,三角函數(shù)的圖像,三角函數(shù)性質(zhì),意在考查學(xué)生對于三角函數(shù)的綜合理解和應(yīng)用.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解題分析】

(1),再解一元二次不等式即可;(2)由題意得,,代入即可求出實數(shù),的值.【題目詳解】(1)∵,∴,∴,解得,∴原不等式的解集為;(2)由題意得,,即,解得或,∴或.【題目點撥】本題主要考查一元二次不等式的解法,考查三個二次之間的關(guān)系,考查轉(zhuǎn)化與化歸思想,屬于基礎(chǔ)題.18、(I)或;(II).【解題分析】

(I)令,將有三個零點問題,轉(zhuǎn)化為有三個不同的解的解決.畫出和的圖像,結(jié)合圖像以及二次函數(shù)的判別式分類討論,由此求得的值.(II)令,將恒成立不等式等價轉(zhuǎn)化為恒成立,通過對分類討論,求得的最大值,由此求得的取值范圍.【題目詳解】(I)由題意等價于有三個不同的解由,可得其函數(shù)圖象如圖所示:聯(lián)立方程:,由可得結(jié)合圖象可知.同理,由可得,因為,結(jié)合圖象可知,綜上可得:或.(Ⅱ)設(shè),原不就價于,兩邊同乘得:,設(shè),原題等價于的最大值.(1)當時,,易得,(2),,易得,所以的最大值為16,即,故.【題目點撥】本小題主要考查根據(jù)函數(shù)零點個數(shù)求參數(shù),考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查不等式恒成立問題的求解策略,考查分類討論的數(shù)學(xué)思想,屬于難題.19、(1)1;(2)40+24【解題分析】

由題設(shè)可知,幾何體是一個高為4的四棱錐,其底面是長、寬分別為8和6的矩形,正側(cè)面及其相對側(cè)面均為底邊長為8,高為h1的等腰三角形,左、右側(cè)面均為底邊長為6、高為h2的等腰三角形,分析出圖形之后,再利用公式求解即可.【題目詳解】解:由題設(shè)可知,幾何體是一個高為4的四棱錐,其底面是長、寬分別為8和6的矩形,正側(cè)面及其相對側(cè)面均為底邊長為8,高為h1的等腰三角形,左、右側(cè)面均為底邊長為6、高為h2的等腰三角形,如圖所示.(1)幾何體的體積為V?S矩形?h6×8×4=1.(2)正側(cè)面及相對側(cè)面底邊上的高為:h12.左、右側(cè)面的底邊上的高為:h24.故幾何體的側(cè)面面積為:S=2×(8×26×4)=40+24.20、乙,理由見解析.【解題分析】

分別求解兩人的測試數(shù)據(jù)的平均數(shù)和方差,然后進行判定.【題目詳解】甲的平均數(shù)為:,方差為:;乙的平均數(shù)為:,方差為:;因為,,所以選擇乙參加比賽較為合適.【題目點撥】本題主要考查統(tǒng)計量的求解及決策問題,平均數(shù)表示平均水平的高低,方差表示穩(wěn)定性,側(cè)重考查數(shù)據(jù)分析的核心素養(yǎng).21、(1)見證明;(2)見證明【解題分析】

(1)設(shè)與的交點為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論