2024屆上海市閘北區(qū)數(shù)學高一第二學期期末綜合測試試題含解析_第1頁
2024屆上海市閘北區(qū)數(shù)學高一第二學期期末綜合測試試題含解析_第2頁
2024屆上海市閘北區(qū)數(shù)學高一第二學期期末綜合測試試題含解析_第3頁
2024屆上海市閘北區(qū)數(shù)學高一第二學期期末綜合測試試題含解析_第4頁
2024屆上海市閘北區(qū)數(shù)學高一第二學期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆上海市閘北區(qū)數(shù)學高一第二學期期末綜合測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)(其中為自然對數(shù)的底數(shù))的圖象大致為()A. B. C. D.2.函數(shù)(其中)的圖象如圖所示,為了得到的圖象,只需把的圖象上所有的點()A.向右平移個單位長度 B.向左平移個單位長度C.向右平移個單位長度 D.向左平移個單位長度3.某學校有教師200人,男學生1200人,女學生1000人,現(xiàn)用分層抽樣的方法從全體師生中抽取一個容量為n的樣本,若女學生一共抽取了80人,則n的值為()A.193 B.192 C.191 D.1904.定義運算為執(zhí)行如圖所示的程序框圖輸出的值,則式子的值是A.-1 B.C. D.5.矩形ABCD中,,,則實數(shù)()A.-16 B.-6 C.4 D.6.直線的斜率為()A. B. C. D.7.產(chǎn)能利用率是指實際產(chǎn)出與生產(chǎn)能力的比率,工業(yè)產(chǎn)能利用率是衡量工業(yè)生產(chǎn)經(jīng)營狀況的重要指標.下圖為國家統(tǒng)計局發(fā)布的2015年至2018年第2季度我國工業(yè)產(chǎn)能利用率的折線圖.在統(tǒng)計學中,同比是指本期統(tǒng)計數(shù)據(jù)與上一年同期統(tǒng)計數(shù)據(jù)相比較,例如2016年第二季度與2015年第二季度相比較;環(huán)比是指本期統(tǒng)計數(shù)據(jù)與上期統(tǒng)計數(shù)據(jù)相比較,例如2015年第二季度與2015年第一季度相比較.據(jù)上述信息,下列結論中正確的是()A.2015年第三季度環(huán)比有所提高 B.2016年第一季度同比有所提高C.2017年第三季度同比有所提高 D.2018年第一季度環(huán)比有所提高8.函數(shù)的最小值和最大值分別為()A. B. C. D.9.公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”,利用“割圓術”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出的值為()(參考數(shù)據(jù):)A.48 B.36 C.24 D.1210.如圖,在圓內(nèi)隨機撒一把豆子,統(tǒng)計落在其內(nèi)接正方形中的豆子數(shù)目,若豆子總數(shù)為n,落在正方形內(nèi)的豆子數(shù)為m,則圓周率π的估算值是()A.nmB.2nmC.3n二、填空題:本大題共6小題,每小題5分,共30分。11.在梯形中,,,設,,則__________(用向量表示).12.已知兩條直線,將圓及其內(nèi)部劃分成三個部分,則的取值范圍是_______;若劃分成的三個部分中有兩部分的面積相等,則的取值有_______種可能.13.已知與之間的一組數(shù)據(jù),則與的線性回歸方程必過點__________.14.直線的傾斜角為_____________15.某射手的一次射擊中,射中10環(huán)、9環(huán)、8環(huán)的概率分別為0.2、0.3、0.1,則此射手在一次射擊中不超過8環(huán)的概率為_________.16.已知等邊,為中點,若點是所在平面上一點,且滿足,則__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量滿足,,且向量與的夾角為.(1)求的值;(2)求.18.某電視臺有一檔益智答題類綜藝節(jié)日,每期節(jié)目從現(xiàn)場編號為01~80的80名觀眾中隨機抽取10人答題.答題選手要從“科技”和“文藝”兩類題目中選一類作答,一共回答10個問題,答對1題得1分.(1)若采用隨機數(shù)表法抽取答題選手,按照以下隨機數(shù)表,從下方帶點的數(shù)字2開始向右讀,每次讀取兩位數(shù),一行用完接下一行左端,求抽取的第6個觀眾的編號.162277943949544354821737932378873509643842634916484421753315724550688770474476721763350258392120676(2)若采用等距系統(tǒng)抽樣法抽取答題選手,且抽取的最小編號為06,求抽取的最大編號.(3)某期節(jié)目的10名答題選手中6人選科技類題目,4人選文藝類題目.其中選擇科技類的6人得分的平均數(shù)為7,方差為;選擇文藝類的4人得分的平均數(shù)為8,方差為.求這期節(jié)目的10名答題選手得分的平均數(shù)和方差.19.若的最小值為.(1)求的表達式;(2)求能使的值,并求當取此值時,的最大值.20.已知函數(shù).(1)求的單調(diào)遞增區(qū)間;(2)求不等式的解集.21.已知公差不為零的等差數(shù)列{an}和等比數(shù)列{bn}滿足:a1=b1=3,b2=a4,且a1,a4,a13成等比數(shù)列.(1)求數(shù)列{an}和{bn}的通項公式;(2)令cn=an?bn,求數(shù)列{cn}的前n項和Sn.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】

由題意,可知,即為奇函數(shù),排除,,又時,,可排除D,即可選出正確答案.【題目詳解】由題意,函數(shù)定義域為,且,即為奇函數(shù),排除,,當時,,,即時,,可排除D,故選C.【題目點撥】本題考查了函數(shù)圖象的識別,考查了函數(shù)奇偶性的運用,屬于中檔題.2、D【解題分析】

由圖象求得函數(shù)解析式的參數(shù),再利用誘導公式將異名函數(shù)化為同名函數(shù)根據(jù)圖象間平移方法求解.【題目詳解】由圖象可知,又,所以,又因為,所以,所以,又因為,又,所以所以又因為故選D.【題目點撥】本題考查由圖象確定函數(shù)的解析式和正弦函數(shù)和余弦函數(shù)圖象之間的平移,關鍵在于將異名函數(shù)化為同名函數(shù),屬于中檔題.3、B【解題分析】

按分層抽樣的定義,按比例計算.【題目詳解】由題意,解得.故選:B.【題目點撥】本題考查分層抽樣,屬于簡單題.4、D【解題分析】

由已知的程序框圖可知,本程序的功能是:計算并輸出分段函數(shù)的值,由此計算可得結論.【題目詳解】由已知的程序框圖可知:本程序的功能是:計算并輸出分段函數(shù)的值,可得,因為,所以,,故選D.【題目點撥】本題主要考查條件語句以及算法的應用,屬于中檔題.算法是新課標高考的一大熱點,其中算法的交匯性問題已成為高考的一大亮,這類問題常常與函數(shù)、數(shù)列、不等式等交匯自然,很好地考查考生的信息處理能力及綜合運用知識解決問題的能力,解決算法的交匯性問題的方:(1)讀懂程序框圖、明確交匯知識,(2)根據(jù)給出問題與程序框圖處理問題即可.5、B【解題分析】

根據(jù)題意即可得出,從而得出,進行數(shù)量積的坐標運算即可求出實數(shù).【題目詳解】據(jù)題意知,,,.故選:.【題目點撥】考查向量垂直的充要條件,以及向量數(shù)量積的坐標運算,屬于容易題.6、A【解題分析】

化直線方程為斜截式求解.【題目詳解】直線可化為,∴直線的斜率是,故選:A.【題目點撥】本題考查直線方程,將一般方程轉化為斜截式方程即可得直線的斜率,屬于基礎題.7、C【解題分析】

根據(jù)同比和環(huán)比的定義比較兩期數(shù)據(jù)得出結論.【題目詳解】解:2015年第二季度利用率為74.3%,第三季度利用率為74.0%,故2015年第三季度環(huán)比有所下降,故A錯誤;2015年第一季度利用率為74.2%,2016年第一季度利用率為72.9%,故2016年第一季度同比有所下降,故B錯誤;2016年底三季度利用率率為73.2%,2017年第三季度利用率為76.8%,故2017年第三季度同比有所提高,故C正確;2017年第四季度利用率為78%,2018年第一季度利用率為76.5%,故2018年第一季度環(huán)比有所下降,故D錯誤.故選C.【題目點撥】本題考查了新定義的理解,圖表認知,考查分析問題解決問題的能力,屬于基礎題.8、C【解題分析】2.∴當時,,當時,,故選C.9、C【解題分析】

由開始,按照框圖,依次求出s,進行判斷。【題目詳解】,故選C.【題目點撥】框圖問題,依據(jù)框圖結構,依次準確求出數(shù)值,進行判斷,是解題關鍵。10、B【解題分析】試題分析:設正方形的邊長為2.則圓的半徑為2,根據(jù)幾何概型的概率公式可以得到mn=4考點:幾何概型.【方法點睛】本題題主要考查“體積型”的幾何概型,屬于中檔題.解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與體積有關的幾何概型問題關鍵是計算問題題的總體積(總空間)以及事件的體積(事件空間);幾何概型問題還有以下幾點容易造成失分,在備考時要高度關注:(1)不能正確判斷事件是古典概型還是幾何概型導致錯誤;(2)基本事件對應的區(qū)域測度把握不準導致錯誤;(3)利用幾何概型的概率公式時,忽視驗證事件是否等可能性導致錯誤.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

根據(jù)向量減法運算得結果.【題目詳解】利用向量的三角形法則,可得,,又,,則,.故答案為.【題目點撥】本題考查向量表示,考查基本化解能力12、3【解題分析】

易知直線過定點,再結合圖形求解.【題目詳解】依題意得直線過定點,如圖:若兩直線將圓分成三個部分,則直線必須與圓相交于圖中陰影部分.又,所以的取值范圍是;當直線位于時,劃分成的三個部分中有兩部分的面積相等.【題目點撥】本題考查直線和圓的位置關系的應用,直線的斜率,結合圖形是此題的關鍵.13、【解題分析】

根據(jù)線性回歸方程一定過樣本中心點,計算這組數(shù)據(jù)的樣本中心點,求出和的平均數(shù)即可求解.【題目詳解】由題意可知,與的線性回歸方程必過樣本中心點,,所以線性回歸方程必過.故答案為:【題目點撥】本題是一道線性回歸方程題目,需掌握線性回歸方程必過樣本中心點這一特征,屬于基礎題.14、【解題分析】

先求得直線的斜率,由此求得對應的傾斜角.【題目詳解】依題意可知,直線的斜率為,故傾斜角為.故答案為:【題目點撥】本小題主要考查直線斜率和傾斜角的計算,屬于基礎題.15、0.5【解題分析】

由互斥事件的概率加法求出射手在一次射擊中超過8環(huán)的概率,再利用對立事件的概率求出不超過8環(huán)的概率即可.【題目詳解】由題意,射中10環(huán)、9環(huán)、8環(huán)的概率分別為0.2、0.3、0.1,所以射手的一次射擊中超過8環(huán)的概率為:0.2+0.3=0.5故射手的一次射擊中不超過8環(huán)的概率為:1-0.5=0.5故答案為0.5【題目點撥】本題主要考查了對立事件的概率,屬于基礎題.16、0【解題分析】

利用向量加、減法的幾何意義可得,再利用向量數(shù)量積的定義即可求解.【題目詳解】根據(jù)向量減法的幾何意義可得:,即,所以.故答案為:0【題目點撥】本題考查了向量的加、減法的幾何意義以及向量的數(shù)量積,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)4(2)-12【解題分析】

(1)由,可得,即,再結合,且向量與的夾角為,利用數(shù)量積公式求解.(2)將利用向量的運算律展開,再利用數(shù)量積公式運算求解.【題目詳解】(1)因為,所以,即.因為,且向量與的夾角為,所以,所以.(2).【題目點撥】本題主要考查向量的數(shù)量積運算,還考查了運算求解的能力,屬于中檔題.18、(1)42;(2)78;(3)平均數(shù)為7.4,方差為2.24【解題分析】

(1)根據(jù)隨機數(shù)表依次讀取數(shù)據(jù)即可,取01~80之間的數(shù)據(jù);(2)根據(jù)系統(tǒng)抽樣,確定組矩,計算可得;(3)根據(jù)平均數(shù)和方差得出數(shù)據(jù)的整體關系,整體代入求解10名選手的平均數(shù)和方差.【題目詳解】(1)根據(jù)題意讀取的編號依次是:20,96(超界),43,84(超界),26,34,91(超界),64,84(超界),42,17,所以抽取的第6個觀眾的編號為42;(2)若采用系統(tǒng)抽樣,組矩為8,最小編號為06,則最大編號為6+9×8=78;(3)記選擇科技類的6人成績分別為:,選擇文藝類的4人成績分別為:,由題:,,,,所以這10名選手的平均數(shù)為方差為【題目點撥】此題考查統(tǒng)計相關知識,涉及隨機數(shù)表讀數(shù),系統(tǒng)抽樣和平均數(shù)與方差的計算,對計算公式的變形處理要求較高.19、(1);(2)的最大值為【解題分析】試題分析:(1)通過同角三角函數(shù)關系將化簡,再對函數(shù)配方,然后討論對稱軸與區(qū)間的位置關系,從而求出的最小值;(2)由,則根據(jù)的解析式可知只能在內(nèi)解方程,從而求出的值,即可求出的最大值.試題解析:(1)若,即,則當時,有最小值,;若,即,則當時,有最小值,若,即,則當時,有最小值,所以;(2)若,由所求的解析式知或由或(舍);由(舍)此時,得,所以時,,此時的最大值為.20、(1),;(2),【解題分析】

(1)由余弦函數(shù)單調(diào)區(qū)間的求法,解不等式即可得解;(2)解三角不等式即可得解.【題目詳解】解:解:(1)令,,解得,,故的單調(diào)遞增區(qū)間為,.(2)因為,所以,即,所以,,解得,.故不等式的解集為,.【題目點撥】本題考查了余弦函數(shù)單調(diào)區(qū)間的求法,重點考查了三角不等式的解法,屬基礎題.21、(1)an=2n+1;bn=3n;(2)Sn=n?3n+1.【解題分析】

(1)利用基本元的思想,結合等差數(shù)列、等比數(shù)列的通項公式、等比中項的性質(zhì)列方程,解方程求得的值,從而求得數(shù)列的通項公式.(2)利用錯位相減求和法求得數(shù)列的前項和.【題目詳解】(1)公差d不為零的等差數(shù)列{an}和公比為q的等比數(shù)列{bn},a1=b1=3,b2=a4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論