2024屆安徽合肥八中數(shù)學高二第二學期期末教學質(zhì)量檢測模擬試題含解析_第1頁
2024屆安徽合肥八中數(shù)學高二第二學期期末教學質(zhì)量檢測模擬試題含解析_第2頁
2024屆安徽合肥八中數(shù)學高二第二學期期末教學質(zhì)量檢測模擬試題含解析_第3頁
2024屆安徽合肥八中數(shù)學高二第二學期期末教學質(zhì)量檢測模擬試題含解析_第4頁
2024屆安徽合肥八中數(shù)學高二第二學期期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆安徽合肥八中數(shù)學高二第二學期期末教學質(zhì)量檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知空間向量1,,,且,則A. B. C.1 D.22.已知的周長為9,且,則的值為()A. B. C. D.3.根據(jù)如下樣本數(shù)據(jù)得到的回歸方程為,則

3

4

5

6

7

8

A., B., C., D.,4.已知袋中裝有除顏色外完全相同的5個球,其中紅球2個,白球3個,現(xiàn)從中任取1球,記下顏色后放回,連續(xù)摸取3次,設(shè)ξ為取得紅球的次數(shù),則PA.425 B.36125 C.95.現(xiàn)安排甲、乙、丙、丁、戌5名同學參加上海世博會志愿者服務(wù)活動,每人從事翻譯、導游、禮儀、司機四項工作之一,每項工作至少有一人參加.甲、乙不會開車但能從事其他三項工作,丙丁戌都能勝任四項工作,則不同安排方案的種數(shù)是A.152 B.126 C.90 D.546.定義在上的偶函數(shù)滿足:對任意的,,有,則().A. B.C. D.7.如圖,在下列四個正方體中,A,B為正方體的兩個頂點,M,N,Q為所在棱的中點,則在這四個正方體中,直線AB與平面MNQ不平行的是()A. B.C. D.8.將函數(shù)的圖象向左平移個單位后得到函數(shù)的圖象如圖所示,則函數(shù)的解析式是()A.() B.()C.() D.()9.已知自然數(shù),則等于()A. B. C. D.10.某中學有高中生3500人,初中生1500人,為了解學生的學習情況,用分層抽樣的方法從該校學生中抽取一個容量為n的樣本,已知從高中生中抽取70人,則n為()A.100 B.150C.200 D.25011.點M的極坐標為(1,π),則它的直角坐標為()A.(1,0) B.(,0) C.(0,1) D.(0,)12.已知向量,則與的夾角為()A.0 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)實數(shù)滿足約束條件,則目標函數(shù)的最大值為________.14.高二(1)班有男生18人,女生12人,現(xiàn)用分層抽樣的方法從該班的全體同學中抽取一個容量為5的樣本,則抽取的男生人數(shù)為____.15.已知隨機變量服從正態(tài)分布,若,則________.16.人排成一排.其中甲乙相鄰,且甲乙均不與丙相鄰的排法共有__________種.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在有陽光時,一根長為3米的旗軒垂直于水平地面,它的影長為米,同時將一個半徑為3米的球放在這塊水平地面上,如圖所示,求球的陰影部分的面積(結(jié)果用無理數(shù)表示).18.(12分)已知二階矩陣A=abcd,矩陣A屬于特征值λ1=-1的一個特征向量為α119.(12分)已知(1)若,且為真,求實數(shù)的取值范圍;(2)若是充分不必要條件,求實數(shù)的取值范圍20.(12分)已知向量,函數(shù).(1)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間;(2)在中,三內(nèi)角的對邊分別為,已知函數(shù)的圖像經(jīng)過點,成等差數(shù)列,且,求a的值.21.(12分)如圖,在四棱錐中,底面為菱形,,,為線段的中點,為線段上的一點.(1)證明:平面平面.(2)若,二面角的余弦值為,求與平面所成角的正弦值.22.(10分)在直角坐標系中,傾斜角為的直線經(jīng)過坐標原點,曲線的參數(shù)方程為(為參數(shù)).以點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求與的極坐標方程;(2)設(shè)與的交點為、,與的交點為、,且,求值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】

利用向量垂直的充要條件,利用向量的數(shù)量積公式列出關(guān)于x的方程,即可求解x的值.【題目詳解】由題意知,空間向量1,,,且,所以,所以,即,解得.故選C.【題目點撥】本題主要考查了向量垂直的充要條件,以及向量的數(shù)量積的運算,其中解答中熟記向量垂直的條件和數(shù)量積的運算公式,準確計算是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.2、A【解題分析】

由題意利用正弦定理可得,再由余弦定理可得cosC的值.【題目詳解】由題意利用正弦定理可得三角形三邊之比為3:2:4,再根據(jù)△ABC的周長為9,可得.再由余弦定理可得cosC,故選A.【題目點撥】本題主要考查正弦定理和余弦定理的應用,求得是解題的關(guān)鍵,屬于中檔題.3、B【解題分析】

試題分析:由表格數(shù)據(jù)的變化情況可知回歸直線斜率為負數(shù),中心點為,代入回歸方程可知考點:回歸方程4、B【解題分析】

先根據(jù)題意得出隨機變量ξ~B3,25【題目詳解】由題意知,ξ~B3,15故選:B?!绢}目點撥】本題考查二項分布概率的計算,關(guān)鍵是要弄清楚隨機變量所服從的分布,同時也要理解獨立重復試驗概率的計算公式,著重考查了推理與運算能力,屬于中等題。5、B【解題分析】試題分析:根據(jù)題意,按甲乙的分工情況不同分兩種情況討論,①甲乙一起參加除了開車的三項工作之一,②甲乙不同時參加一項工作;分別由排列、組合公式計算其情況數(shù)目,進而由分類計數(shù)的加法公式,計算可得答案.解:根據(jù)題意,分情況討論,①甲乙一起參加除了開車的三項工作之一:C31×A33=18種;②甲乙不同時參加一項工作,進而又分為2種小情況;1°丙、丁、戌三人中有兩人承擔同一份工作,有A32×C32×A22=3×2×3×2=36種;2°甲或乙與丙、丁、戌三人中的一人承擔同一份工作:A32×C31×C21×A22=72種;由分類計數(shù)原理,可得共有18+36+72=126種,故選B.考點:排列、組合的實際應用.6、A【解題分析】由對任意x1,x2[0,+∞)(x1≠x2),有<0,得f(x)在[0,+∞)上單獨遞減,所以,選A.點睛:利用函數(shù)性質(zhì)比較兩個函數(shù)值或兩個自變量的大小,首先根據(jù)函數(shù)的性質(zhì)構(gòu)造某個函數(shù),然后根據(jù)函數(shù)的奇偶性轉(zhuǎn)化為單調(diào)區(qū)間上函數(shù)值,最后根據(jù)單調(diào)性比較大小,要注意轉(zhuǎn)化在定義域內(nèi)進行7、A【解題分析】

利用線面平行判定定理可知B、C、D均不滿足題意,從而可得答案.【題目詳解】對于B項,如圖所示,連接CD,因為AB∥CD,M,Q分別是所在棱的中點,所以MQ∥CD,所以AB∥MQ,又AB?平面MNQ,MQ?平面MNQ,所以AB∥平面MNQ,同理可證,C,D項中均有AB∥平面MNQ.故選:A.【題目點撥】本題考查空間中線面平行的判定定理,利用三角形中位線定理是解決本題的關(guān)鍵,屬于中檔題.8、A【解題分析】設(shè),由的圖像可知,函數(shù)的周期為,所以,將代入得,所以,向右平移后得到.9、D【解題分析】分析:直接利用排列數(shù)計算公式即可得到答案.詳解:.故選:D.點睛:合理利用排列數(shù)計算公式是解題的關(guān)鍵.10、A【解題分析】試題分析:根據(jù)已知可得:,故選擇A考點:分層抽樣11、B【解題分析】

將極坐標代入極坐標與直角坐標之間的互化公式,即可得到直角坐標方程.【題目詳解】將極坐標代入互化公式得:,,所以直角坐標為:.故選B.【題目點撥】本題考查極坐標化為直角坐標的公式,注意特殊角三角函數(shù)值不要出錯.12、C【解題分析】由題設(shè),故,應選答案C.二、填空題:本題共4小題,每小題5分,共20分。13、2【解題分析】分析:由題意,作出約束條件所表示的平面區(qū)域,結(jié)合圖象得到目標函數(shù)過點時,取得最大值,即可求解.詳解:由題意,作出約束條件所表示的平面區(qū)域,如圖所示,目標函數(shù),即,當直線在上的截距最大值,此時取得最大值,結(jié)合圖象可得,當直線過點時,目標函數(shù)取得最大值,由,解得,所以目標函數(shù)的最大值為.點睛:本題主要考查簡單線性規(guī)劃求解目標函數(shù)的最值問題.解決此類問題的關(guān)鍵是正確畫出不等式組表示的可行域,將目標函數(shù)賦予幾何意義;求目標函數(shù)的最值的一般步驟為:一畫二移三求,其關(guān)鍵是準確作出可行域,理解目標函數(shù)的意義是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合法思想的應用.14、3【解題分析】

根據(jù)分層抽樣的比例求得.【題目詳解】由分層抽樣得抽取男生的人數(shù)為5×18故得解.【題目點撥】本題考查分層抽樣,屬于基礎(chǔ)題.15、0.4558【解題分析】

隨機變量服從正態(tài)分布,,根據(jù)對稱性可求得的值,再根據(jù)概率的基本性質(zhì),可求得.【題目詳解】因為,所以,故.所以.故答案為:0.4558.【題目點撥】本題考查了正態(tài)分布曲線的對稱性,屬于基礎(chǔ)題.16、24.【解題分析】分析:由題意結(jié)合排列組合的方法和計算公式整理計算即可求得最終結(jié)果.詳解:將甲乙捆綁后排序,有種方法,余下的丙丁戊三人排序,有種方法,甲乙均不與丙相鄰,則甲乙插空的方法有2種,結(jié)合乘法原理可知滿足題意的排列方法有:種.點睛:(1)解排列組合問題要遵循兩個原則:一是按元素(或位置)的性質(zhì)進行分類;二是按事情發(fā)生的過程進行分步.具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).(2)不同元素的分配問題,往往是先分組再分配.在分組時,通常有三種類型:①不均勻分組;②均勻分組;③部分均勻分組,注意各種分組類型中,不同分組方法的求法.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、6π(米2)【解題分析】

先求出射影角,再由射影比例求球的陰影部分的面積?!绢}目詳解】解:由題意知,光線與地面成60°角,設(shè)球的陰影部分面積為S,垂直于光線的大圓面積為S′,則Scos30°=S′,并且S′=9π,所以S=6π(米2)【題目點撥】先求出射影角,再由射影比例求球的陰影部分的面積。18、A=【解題分析】

運用矩陣定義列出方程組求解矩陣A【題目詳解】由特征值、特征向量定義可知,Aα即abc同理可得3a+2b=12,3c+2d=8.解得a=2,b=3,c=2,d=1.因此矩陣【題目點撥】本題考查了由矩陣特征值和特征向量求矩陣,只需運用定義得出方程組即可求出結(jié)果,較為簡單19、(1);(2)【解題分析】

(1)解不等求得p,根據(jù)m的值求得q;根據(jù)p∧q為真可知p、q同時為真,可求得x的取值范圍.(2)先求得q.根據(jù)p是q的充分不必要條件,得到不等式組,解不等式組即可得到m的取值范圍.【題目詳解】(1)由x2-6x+5≤0,得1≤x≤5,∴p:1≤x≤5.當m=2時,q:-1≤x≤3.若p∧q為真,p,q同時為真命題,則即1≤x≤3.∴實數(shù)x的取值范圍為[1,3].(2)由x2-2x+1-m2≤0,得q:1-m≤x≤1+m.∵p是q的充分不必要條件,∴解得m≥4.∴實數(shù)m的取值范圍為[4,+∞).【題目點撥】本題考查了復合命題的簡單應用,充分必要條件的關(guān)系,屬于基礎(chǔ)題.20、(1),(2)【解題分析】

(1)利用向量的數(shù)量積和二倍角公式化簡得,故可求其周期與單調(diào)性;(2)根據(jù)圖像過得到,故可求得的大小,再根據(jù)數(shù)量積得到的乘積,最后結(jié)合余弦定理和構(gòu)建關(guān)于的方程即可.【題目詳解】(1),最小正周期:,由得,所以的單調(diào)遞增區(qū)間為;(2)由可得:,所以.又因為成等差數(shù)列,所以而,.21、(1)見解析;(2)【解題分析】

(1)由得平面PAE,進而可得證;(2)先證得平面,設(shè),以為坐標原點,的方向為軸正方向,建立空間直角坐標系,分別計算平面的法向量為和,設(shè)與平面所成角為,則,代入計算即可得解.【題目詳解】(1)證明:連接,因為,為線段的中點,所以.又,,所以為等邊三角形,.因為,所以平面,又平面,所以平面平面.(2)解:設(shè),則,因為,所以,同理可證,所以平面.如圖,設(shè),以為坐標原點,的方向為軸正方向,建立空間直角坐標系.易知為二面角的平面角,所以,從而.由,得.又由,,知,.設(shè)平面的法向量為,由,,得,不妨設(shè),得.又,,所以.設(shè)與平面所成角為,則.所以與平面所成角的正弦值為.【題目點撥】用向量法求解空間線面角的關(guān)鍵在于“四破”:第一,破“建系關(guān)”,構(gòu)建恰當?shù)目臻g直角坐標系;第二,破“求坐標關(guān)”,準確求解相關(guān)點的坐標;第三,破“求法向量關(guān)”,求出平面的法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論