版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省句容市崇明中學(xué)2024屆中考數(shù)學(xué)考前最后一卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,已知E,F(xiàn)分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結(jié)論的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤2.如圖是反比例函數(shù)(k為常數(shù),k≠0)的圖象,則一次函數(shù)的圖象大致是()A. B. C. D.3.如圖,在△ABC中,AD是BC邊的中線,∠ADC=30°,將△ADC沿AD折疊,使C點落在C′的位置,若BC=4,則BC′的長為()A.2 B.2 C.4 D.34.已知拋物線y=ax2+bx+c與x軸交于點A和點B,頂點為P,若△ABP組成的三角形恰為等腰直角三角形,則b2﹣4ac的值為()A.1 B.4 C.8 D.125.正三角形繞其中心旋轉(zhuǎn)一定角度后,與自身重合,旋轉(zhuǎn)角至少為()A.30° B.60° C.120° D.180°6.某班體育委員對本班學(xué)生一周鍛煉(單位:小時)進行了統(tǒng)計,繪制了如圖所示的折線統(tǒng)計圖,則該班這些學(xué)生一周鍛煉時間的中位數(shù)是()A.10 B.11 C.12 D.137.下列代數(shù)運算正確的是()A.(x+1)2=x2+1 B.(x3)2=x5 C.(2x)2=2x2 D.x3?x2=x58.如圖,AB是⊙O的切線,半徑OA=2,OB交⊙O于C,∠B=30°,則劣弧的長是()A.π B. C.π D.π9.如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長度是()A.3cm B.cm C.2.5cm D.cm10.某大學(xué)生利用課余時間在網(wǎng)上銷售一種成本為50元/件的商品,每月的銷售量y(件)與銷售單價x(元/件)之間的函數(shù)關(guān)系式為y=–4x+440,要獲得最大利潤,該商品的售價應(yīng)定為A.60元B.70元C.80元D.90元11.整數(shù)a、b在數(shù)軸上對應(yīng)點的位置如圖,實數(shù)c在數(shù)軸上且滿足,如果數(shù)軸上有一實數(shù)d,始終滿足,則實數(shù)d應(yīng)滿足().A. B. C. D.12.計算:的結(jié)果是()A. B.. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,將△AOB繞點O按逆時針方向旋轉(zhuǎn)45°后得到△COD,若∠AOB=15°,則∠AOD=_____度.14.已知b是a,c的比例中項,若a=4,c=16,則b=________.15.如圖,點A是雙曲線y=﹣在第二象限分支上的一個動點,連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,點C在第一象限,隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線y=上運動,則k的值為_____.16.對于函數(shù),我們定義(m、n為常數(shù)).例如,則.已知:.若方程有兩個相等實數(shù)根,則m的值為__________.17.如圖,等腰△ABC中,AB=AC=5,BC=8,點F是邊BC上不與點B,C重合的一個動點,直線DE垂直平分BF,垂足為D.當△ACF是直角三角形時,BD的長為_____.18.如圖,AB是⊙O的弦,點C在過點B的切線上,且OC⊥OA,OC交AB于點P,已知∠OAB=22°,則∠OCB=__________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)為了維護國家主權(quán)和海洋權(quán)利,海監(jiān)部門對我國領(lǐng)海實現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務(wù)的海監(jiān)船以每小時50海里的速度向正東方航行,在A處測得燈塔P在北偏東60°方向上,繼續(xù)航行1小時到達B處,此時測得燈塔P在北偏東30°方向上.求∠APB的度數(shù);已知在燈塔P的周圍25海里內(nèi)有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?.20.(6分)如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點B作⊙O的切線交CD的延長線于點E,BC=6,ADBD=221.(6分)在平面直角坐標系xOy中,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過A(0,4),B(2,0),C(-2,0)三點.(1)求二次函數(shù)的表達式;(2)在x軸上有一點D(-4,0),將二次函數(shù)的圖象沿射線DA方向平移,使圖象再次經(jīng)過點B.①求平移后圖象頂點E的坐標;②直接寫出此二次函數(shù)的圖象在A,B兩點之間(含A,B兩點)的曲線部分在平移過程中所掃過的面積.22.(8分)如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD于點E,DA平分∠BDE.(1)求證:AE是⊙O的切線;(2)如果AB=4,AE=2,求⊙O的半徑.23.(8分)如圖,拋物線(a≠0)交x軸于A、B兩點,A點坐標為(3,0),與y軸交于點C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點G.求拋物線的解析式;拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標為m,請用含m的代數(shù)式表示PM的長;在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.24.(10分)在平面直角坐標系中,O為坐標原點,點A(0,1),點C(1,0),正方形AOCD的兩條對角線的交點為B,延長BD至點G,使DG=BD,延長BC至點E,使CE=BC,以BG,BE為鄰邊作正方形BEFG.(Ⅰ)如圖①,求OD的長及的值;(Ⅱ)如圖②,正方形AOCD固定,將正方形BEFG繞點B逆時針旋轉(zhuǎn),得正方形BE′F′G′,記旋轉(zhuǎn)角為α(0°<α<360°),連接AG′.①在旋轉(zhuǎn)過程中,當∠BAG′=90°時,求α的大??;②在旋轉(zhuǎn)過程中,求AF′的長取最大值時,點F′的坐標及此時α的大?。ㄖ苯訉懗鼋Y(jié)果即可).25.(10分)在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞著點B順時針旋轉(zhuǎn)角a(0°<a<90°)得到△A1BC;A1B交AC于點E,A1C1分別交AC、BC于D、F兩點.(1)如圖1,觀察并猜想,在旋轉(zhuǎn)過程中,線段BE與BF有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論.(2)如圖2,當a=30°時,試判斷四邊形BC1DA的形狀,并證明.(3)在(2)的條件下,求線段DE的長度.26.(12分)兩個全等的等腰直角三角形按如圖方式放置在平面直角坐標系中,OA在x軸上,已知∠COD=∠OAB=90°,OC=,反比例函數(shù)y=的圖象經(jīng)過點B.求k的值.把△OCD沿射線OB移動,當點D落在y=圖象上時,求點D經(jīng)過的路徑長.27.(12分)將一個等邊三角形紙片AOB放置在平面直角坐標系中,點O(0,0),點B(6,0).點C、D分別在OB、AB邊上,DC∥OA,CB=2.(I)如圖①,將△DCB沿射線CB方向平移,得到△D′C′B′.當點C平移到OB的中點時,求點D′的坐標;(II)如圖②,若邊D′C′與AB的交點為M,邊D′B′與∠ABB′的角平分線交于點N,當BB′多大時,四邊形MBND′為菱形?并說明理由.(III)若將△DCB繞點B順時針旋轉(zhuǎn),得到△D′C′B,連接AD′,邊D′C′的中點為P,連接AP,當AP最大時,求點P的坐標及AD′的值.(直接寫出結(jié)果即可).
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
根據(jù)正方形的性質(zhì)可得AB=BC=AD,∠ABC=∠BAD=90°,再根據(jù)中點定義求出AE=BF,然后利用“邊角邊”證明△ABF和△DAE全等,根據(jù)全等三角形對應(yīng)角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,從而求出∠AMD=90°,再根據(jù)鄰補角的定義可得∠AME=90°,從而判斷①正確;根據(jù)中線的定義判斷出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判斷出②錯誤;根據(jù)直角三角形的性質(zhì)判斷出△AED、△MAD、△MEA三個三角形相似,利用相似三角形對應(yīng)邊成比例可得,然后求出MD=2AM=4EM,判斷出④正確,設(shè)正方形ABCD的邊長為2a,利用勾股定理列式求出AF,再根據(jù)相似三角形對應(yīng)邊成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判斷出⑤正確;過點M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,過點M作GH∥AB,過點O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根據(jù)正方形的性質(zhì)求出BO,然后利用勾股定理逆定理判斷出∠BMO=90°,從而判斷出③正確.【詳解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
∵E、F分別為邊AB,BC的中點,
∴AE=BF=BC,
在△ABF和△DAE中,,
∴△ABF≌△DAE(SAS),
∴∠BAF=∠ADE,
∵∠BAF+∠DAF=∠BAD=90°,
∴∠ADE+∠DAF=∠BAD=90°,
∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,
∴∠AME=180°-∠AMD=180°-90°=90°,故①正確;
∵DE是△ABD的中線,
∴∠ADE≠∠EDB,
∴∠BAF≠∠EDB,故②錯誤;
∵∠BAD=90°,AM⊥DE,
∴△AED∽△MAD∽△MEA,
∴∴AM=2EM,MD=2AM,
∴MD=2AM=4EM,故④正確;
設(shè)正方形ABCD的邊長為2a,則BF=a,
在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,
∴△AME∽△ABF,
∴,
即,
解得AM=
∴MF=AF-AM=,
∴AM=MF,故⑤正確;
如圖,過點M作MN⊥AB于N,
則即解得MN=,AN=,
∴NB=AB-AN=2a-=,
根據(jù)勾股定理,BM=過點M作GH∥AB,過點O作OK⊥GH于K,
則OK=a-=,MK=-a=,
在Rt△MKO中,MO=根據(jù)正方形的性質(zhì),BO=2a×,
∵BM2+MO2=
∴BM2+MO2=BO2,
∴△BMO是直角三角形,∠BMO=90°,故③正確;
綜上所述,正確的結(jié)論有①③④⑤共4個.故選:D【點睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理的應(yīng)用,勾股定理逆定理的應(yīng)用,綜合性較強,難度較大,仔細分析圖形并作出輔助線構(gòu)造出直角三角形與相似三角形是解題的關(guān)鍵.2、B【解析】根據(jù)圖示知,反比例函數(shù)的圖象位于第一、三象限,∴k>0,∴一次函數(shù)y=kx?k的圖象與y軸的交點在y軸的負半軸,且該一次函數(shù)在定義域內(nèi)是增函數(shù),∴一次函數(shù)y=kx?k的圖象經(jīng)過第一、三、四象限;故選:B.3、A【解析】連接CC′,∵將△ADC沿AD折疊,使C點落在C′的位置,∠ADC=30°,∴∠ADC′=∠ADC=30°,CD=C′D,∴∠CDC′=∠ADC+∠ADC′=60°,∴△DCC′是等邊三角形,∴∠DC′C=60°,∵在△ABC中,AD是BC邊的中線,即BD=CD,∴C′D=BD,∴∠DBC′=∠DC′B=∠CDC′=30°,∴∠BC′C=∠DC′B+∠DC′C=90°,∵BC=4,∴BC′=BC?cos∠DBC′=4×=2,故選A.【點睛】本題考查了折疊的性質(zhì)、等邊三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、直角三角形的性質(zhì)以及三角函數(shù)等知識,準確添加輔助線,掌握折疊前后圖形的對應(yīng)關(guān)系是解題的關(guān)鍵.4、B【解析】
設(shè)拋物線與x軸的兩交點A、B坐標分別為(x1,0),(x2,0),利用二次函數(shù)的性質(zhì)得到P(-,),利用x1、x2為方程ax2+bx+c=0的兩根得到x1+x2=-,x1?x2=,則利用完全平方公式變形得到AB=|x1-x2|=,接著根據(jù)等腰直角三角形的性質(zhì)得到||=?,然后進行化簡可得到b2-1ac的值.【詳解】設(shè)拋物線與x軸的兩交點A、B坐標分別為(x1,0),(x2,0),頂點P的坐標為(-,),則x1、x2為方程ax2+bx+c=0的兩根,∴x1+x2=-,x1?x2=,∴AB=|x1-x2|====,∵△ABP組成的三角形恰為等腰直角三角形,
∴||=?,=,∴b2-1ac=1.故選B.【點睛】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)的性質(zhì)和等腰直角三角形的性質(zhì).5、C【解析】
求出正三角形的中心角即可得解【詳解】正三角形繞其中心旋轉(zhuǎn)一定角度后,與自身重合,旋轉(zhuǎn)角至少為120°,故選C.【點睛】本題考查旋轉(zhuǎn)對稱圖形的概念:把一個圖形繞著一個定點旋轉(zhuǎn)一個角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對稱圖形,這個定點叫做旋轉(zhuǎn)對稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角,掌握正多邊形的中心角的求解是解題的關(guān)鍵6、B【解析】
根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得本班的學(xué)生數(shù),從而可以求得該班這些學(xué)生一周鍛煉時間的中位數(shù),本題得以解決.【詳解】由統(tǒng)計圖可得,本班學(xué)生有:6+9+10+8+7=40(人),該班這些學(xué)生一周鍛煉時間的中位數(shù)是:11,故選B.【點睛】本題考查折線統(tǒng)計圖、中位數(shù),解答本題的關(guān)鍵是明確題意,會求一組數(shù)據(jù)的中位數(shù).7、D【解析】
分別根據(jù)同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式進行逐一計算即可.【詳解】解:A.(x+1)2=x2+2x+1,故A錯誤;B.(x3)2=x6,故B錯誤;C.(2x)2=4x2,故C錯誤.D.x3?x2=x5,故D正確.故本題選D.【點睛】本題考查的是同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式,熟練掌握他們的定義是解題的關(guān)鍵.8、C【解析】
由切線的性質(zhì)定理得出∠OAB=90°,進而求出∠AOB=60°,再利用弧長公式求出即可.【詳解】∵AB是⊙O的切線,∴∠OAB=90°,∵半徑OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧AC?的長是:=,故選:C.【點睛】本題考查了切線的性質(zhì),圓周角定理,弧長的計算,解題的關(guān)鍵是先求出角度再用弧長公式進行計算.9、D【解析】分析:根據(jù)垂徑定理得出OE的長,進而利用勾股定理得出BC的長,再利用相似三角形的判定和性質(zhì)解答即可.詳解:連接OB,∵AC是⊙O的直徑,弦BD⊥AO于E,BD=1cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.故選D.點睛:本題考查了垂徑定理,關(guān)鍵是根據(jù)垂徑定理得出OE的長.10、C【解析】設(shè)銷售該商品每月所獲總利潤為w,則w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,∴當x=80時,w取得最大值,最大值為3600,即售價為80元/件時,銷售該商品所獲利潤最大,故選C.11、D【解析】
根據(jù)a≤c≤b,可得c的最小值是﹣1,根據(jù)有理數(shù)的加法,可得答案.【詳解】由a≤c≤b,得:c最小值是﹣1,當c=﹣1時,c+d=﹣1+d,﹣1+d≥0,解得:d≥1,∴d≥b.故選D.【點睛】本題考查了實數(shù)與數(shù)軸,利用a≤c≤b得出c的最小值是﹣1是解題的關(guān)鍵.12、B【解析】
根據(jù)分式的運算法則即可求出答案.【詳解】解:原式===故選;B【點睛】本題考查分式的運算法則,解題關(guān)鍵是熟練運用分式的運算法則,本題屬于基礎(chǔ)題型.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、30°【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠BOD=45°,再用∠BOD減去∠AOB即可.【詳解】∵將△AOB繞點O按逆時針方向旋轉(zhuǎn)45°后,得到△COD,∴∠BOD=45°,又∵∠AOB=15°,∴∠AOD=∠BOD-∠AOB=45°-15°=30°.故答案為30°.14、±8【解析】
根據(jù)比例中項的定義即可求解.【詳解】∵b是a,c的比例中項,若a=4,c=16,∴b2=ac=4×16=64,∴b=±8,故答案為±8【點睛】此題考查了比例中項的定義,如果作為比例線段的內(nèi)項是兩條相同的線段,即a∶b=b∶c或,那么線段b叫做線段a、c的比例中項.15、1【解析】
根據(jù)題意得出△AOD∽△OCE,進而得出,即可得出k=EC×EO=1.【詳解】解:連接CO,過點A作AD⊥x軸于點D,過點C作CE⊥x軸于點E,∵連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=10°,則∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=tan60°=,∴==1,∵點A是雙曲線y=-在第二象限分支上的一個動點,∴S△AOD=×|xy|=,∴S△EOC=,即×OE×CE=,∴k=OE×CE=1,故答案為1.【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)的交點以及相似三角形的判定與性質(zhì),正確添加輔助線,得出△AOD∽△OCE是解題關(guān)鍵.16、【解析】分析:根據(jù)題目中所給定義先求,再利用根與系數(shù)關(guān)系求m值.詳解:由所給定義知,,若=0,解得m=.點睛:一元二次方程的根的判別式是,△=b2-4ac,a,b,c分別是一元二次方程中二次項系數(shù)、一次項系數(shù)和常數(shù)項.
△>0說明方程有兩個不同實數(shù)解,△=0說明方程有兩個相等實數(shù)解,△<0說明方程無實數(shù)解.實際應(yīng)用中,有兩種題型(1)證明方程實數(shù)根問題,需要對△的正負進行判斷,可能是具體的數(shù)直接可以判斷,也可能是含字母的式子,一般需要配方等技巧.17、2或【解析】
分兩種情況討論:(1)當時,,利用等腰三角形的三線合一性質(zhì)和垂直平分線的性質(zhì)可解;(2)當時,過點A作于點M,證明列比例式求出,從而得,再利用垂直平分線的性質(zhì)得.【詳解】解:(1)當時,∵垂直平分,.(2)當時,過點A作于點,在與中,.故答案為或.【點睛】本題主要考查了等腰三角形的三線合一性質(zhì)和線段垂直平分線的性質(zhì)定理得應(yīng)用.本題難度中等.18、44°【解析】
首先連接OB,由點C在過點B的切線上,且OC⊥OA,根據(jù)等角的余角相等,易證得∠CBP=∠CPB,利用等腰三角形的性質(zhì)解答即可.【詳解】連接OB,∵BC是⊙O的切線,∴OB⊥BC,∴∠OBA+∠CBP=90°,∵OC⊥OA,∴∠A+∠APO=90°,∵OA=OB,∠OAB=22°,∴∠OAB=∠OBA=22°,∴∠APO=∠CBP=68°,∵∠APO=∠CPB,∴∠CPB=∠ABP=68°,∴∠OCB=180°-68°-68°=44°,故答案為44°【點睛】此題考查了切線的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)30°;(2)海監(jiān)船繼續(xù)向正東方向航行是安全的.【解析】
(1)根據(jù)直角的性質(zhì)和三角形的內(nèi)角和求解;(2)過點P作PH⊥AB于點H,根據(jù)解直角三角形,求出點P到AB的距離,然后比較即可.【詳解】解:(1)在△APB中,∠PAB=30°,∠ABP=120°∴∠APB=180°-30°-120°=30°(2)過點P作PH⊥AB于點H在Rt△APH中,∠PAH=30°,AH=PH在Rt△BPH中,∠PBH=30°,BH=PH∴AB=AH-BH=PH=50解得PH=25>25,因此不會進入暗礁區(qū),繼續(xù)航行仍然安全.考點:解直角三角形20、(1)證明見解析;(2)BE=5【解析】試題分析:連接OD.根據(jù)圓周角定理得到∠ADO+∠ODB=90°,而∠CDA=∠CBD,∠CBD=∠BDO.于是∠ADO+∠CDA=90°,可以證明是切線.(2)根據(jù)已知條件得到△CDA∽△CBD由相似三角形的性質(zhì)得到CDBD=ADBD.試題解析:(1)連接OD.∵OB=OD,∴∠OBD=∠BDO.∵∠CDA=∠CBD,∴∠CDA=∠ODB.又∵AB是⊙O的直徑,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∴∠ADO+∠CDA=90°,即∠CDO=90°,∴OD⊥CD.∵OD是⊙O的半徑,∴CD是⊙O的切線;(2)∵∠C=∠C,∠CDA=∠CBD,∴△CDA∽△CBD,CD∵ADBD=2∵CE,BE是⊙O的切線,∴BE=DE,BE⊥BC,∴BE2+BC2=EC2,即BE2+62=(4+BE)2,解得BE=.21、(1)y=﹣x2+4;(2)①E(5,9);②1.【解析】
(1)待定系數(shù)法即可解題,(2)①求出直線DA的解析式,根據(jù)頂點E在直線DA上,設(shè)出E的坐標,帶入即可求解;②AB掃過的面積是平行四邊形ABGE,根據(jù)S四邊形ABGE=S矩形IOKH﹣S△AOB﹣S△AEI﹣S△EHG﹣S△GBK,求出點B(2,0),G(7,5),A(0,4),E(5,9),根據(jù)坐標幾何含義即可解題.【詳解】解:(1)∵A(0,4),B(2,0),C(﹣2,0)∴二次函數(shù)的圖象的頂點為A(0,4),∴設(shè)二次函數(shù)表達式為y=ax2+4,將B(2,0)代入,得4a+4=0,解得,a=﹣1,∴二次函數(shù)表達式y(tǒng)=﹣x2+4;(2)①設(shè)直線DA:y=kx+b(k≠0),將A(0,4),D(﹣4,0)代入,得,解得,,∴直線DA:y=x+4,由題意可知,平移后的拋物線的頂點E在直線DA上,∴設(shè)頂點E(m,m+4),∴平移后的拋物線表達式為y=﹣(x﹣m)2+m+4,又∵平移后的拋物線過點B(2,0),∴將其代入得,﹣(2﹣m)2+m+4=0,解得,m1=5,m2=0(不合題意,舍去),∴頂點E(5,9),②如圖,連接AB,過點B作BL∥AD交平移后的拋物線于點G,連結(jié)EG,∴四邊形ABGE的面積就是圖象A,B兩點間的部分掃過的面積,過點G作GK⊥x軸于點K,過點E作EI⊥y軸于點I,直線EI,GK交于點H.由點A(0,4)平移至點E(5,9),可知點B先向右平移5個單位,再向上平移5個單位至點G.∵B(2,0),∴點G(7,5),∴GK=5,OB=2,OK=7,∴BK=OK﹣OB=7﹣2=5,∵A(0,4),E(5,9),∴AI=9﹣4=5,EI=5,∴EH=7﹣5=2,HG=9﹣5=4,∴S四邊形ABGE=S矩形IOKH﹣S△AOB﹣S△AEI﹣S△EHG﹣S△GBK=7×9﹣×2×4﹣×5×5﹣×2×4﹣×5×5=63﹣8﹣25=1答:圖象A,B兩點間的部分掃過的面積為1.【點睛】本題考查了二次函數(shù)解析式的求法,二次函數(shù)的圖形和性質(zhì),二次函數(shù)的實際應(yīng)用,難度較大,建立面積之間的等量關(guān)系是解題關(guān)鍵.22、(1)見解析;(1)⊙O半徑為【解析】
(1)連接OA,利用已知首先得出OA∥DE,進而證明OA⊥AE就能得到AE是⊙O的切線;(1)通過證明△BAD∽△AED,再利用對應(yīng)邊成比例關(guān)系從而求出⊙O半徑的長.【詳解】解:(1)連接OA,∵OA=OD,∴∠1=∠1.∵DA平分∠BDE,∴∠1=∠2.∴∠1=∠2.∴OA∥DE.∴∠OAE=∠4,∵AE⊥CD,∴∠4=90°.∴∠OAE=90°,即OA⊥AE.又∵點A在⊙O上,∴AE是⊙O的切線.(1)∵BD是⊙O的直徑,∴∠BAD=90°.∵∠3=90°,∴∠BAD=∠3.又∵∠1=∠2,∴△BAD∽△AED.∴,∵BA=4,AE=1,∴BD=1AD.在Rt△BAD中,根據(jù)勾股定理,得BD=.∴⊙O半徑為.23、(1)拋物線的解析式為;(2)PM=(0<m<3);(3)存在這樣的點P使△PFC與△AEM相似.此時m的值為或1,△PCM為直角三角形或等腰三角形.【解析】
(1)將A(3,0),C(0,4)代入,運用待定系數(shù)法即可求出拋物線的解析式.(2)先根據(jù)A、C的坐標,用待定系數(shù)法求出直線AC的解析式,從而根據(jù)拋物線和直線AC的解析式分別表示出點P、點M的坐標,即可得到PM的長.(3)由于∠PFC和∠AEM都是直角,F(xiàn)和E對應(yīng),則若以P、C、F為頂點的三角形和△AEM相似時,分兩種情況進行討論:①△PFC∽△AEM,②△CFP∽△AEM;可分別用含m的代數(shù)式表示出AE、EM、CF、PF的長,根據(jù)相似三角形對應(yīng)邊的比相等列出比例式,求出m的值,再根據(jù)相似三角形的性質(zhì),直角三角形、等腰三角形的判定判斷出△PCM的形狀.【詳解】解:(1)∵拋物線(a≠0)經(jīng)過點A(3,0),點C(0,4),∴,解得.∴拋物線的解析式為.(2)設(shè)直線AC的解析式為y=kx+b,∵A(3,0),點C(0,4),∴,解得.∴直線AC的解析式為.∵點M的橫坐標為m,點M在AC上,∴M點的坐標為(m,).∵點P的橫坐標為m,點P在拋物線上,∴點P的坐標為(m,).∴PM=PE-ME=()-()=.∴PM=(0<m<3).(3)在(2)的條件下,連接PC,在CD上方的拋物線部分存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似.理由如下:由題意,可得AE=3﹣m,EM=,CF=m,PF==,若以P、C、F為頂點的三角形和△AEM相似,分兩種情況:①若△PFC∽△AEM,則PF:AE=FC:EM,即():(3-m)=m:(),∵m≠0且m≠3,∴m=.∵△PFC∽△AEM,∴∠PCF=∠AME.∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.∴△PCM為直角三角形.②若△CFP∽△AEM,則CF:AE=PF:EM,即m:(3-m)=():(),∵m≠0且m≠3,∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME.∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM.∴△PCM為等腰三角形.綜上所述,存在這樣的點P使△PFC與△AEM相似.此時m的值為或1,△PCM為直角三角形或等腰三角形.24、(Ⅰ)(Ⅱ)①α=30°或150°時,∠BAG′=90°②當α=315°時,A、B、F′在一條直線上時,AF′的長最大,最大值為+2,此時α=315°,F(xiàn)′(+,﹣)【解析】
(1)根據(jù)正方形的性質(zhì)以及勾股定理即可解決問題,(2)①因為∠BAG′=90°,BG′=2AB,可知sin∠AG′B=,推出∠AG′B=30°,推出旋轉(zhuǎn)角α=30°,據(jù)對稱性可知,當∠ABG″=60°時,∠BAG″=90°,也滿足條件,此時旋轉(zhuǎn)角α=150°,②當α=315°時,A、B、F′在一條直線上時,AF′的長最大.【詳解】(Ⅰ)如圖1中,∵A(0,1),∴OA=1,∵四邊形OADC是正方形,∴∠OAD=90°,AD=OA=1,∴OD=AC==,∴AB=BC=BD=BO=,∵BD=DG,∴BG=,∴==.(Ⅱ)①如圖2中,∵∠BAG′=90°,BG′=2AB,∴sin∠AG′B==,∴∠AG′B=30°,∴∠ABG′=60°,∴∠DBG′=30°,∴旋轉(zhuǎn)角α=30°,根據(jù)對稱性可知,當∠ABG″=60°時,∠BAG″=90°,也滿足條件,此時旋轉(zhuǎn)角α=150°,綜上所述,旋轉(zhuǎn)角α=30°或150°時,∠BAG′=90°.②如圖3中,連接OF,∵四邊形BE′F′G′是正方形的邊長為∴BF′=2,∴當α=315°時,A、B、F′在一條直線上時,AF′的長最大,最大值為+2,此時α=315°,F(xiàn)′(+,﹣)【點睛】本題考查的是正方形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)以及銳角三角函數(shù)的定義,解決本題的關(guān)鍵是要熟練掌握正方形的四條邊相等、四個角相等,旋轉(zhuǎn)變換的性質(zhì)以及特殊角的三角函數(shù)值的應(yīng)用.25、(1)(2)四邊形是菱形.(3)【解析】
(1)根據(jù)等邊對等角及旋轉(zhuǎn)的特征可得即可證得結(jié)論;
(2)先根據(jù)兩組對邊分別平行的四邊形是平行四邊形,再得到鄰邊相等即可判斷結(jié)論;
(3)過點E作于點G,解可得AE的長,結(jié)合菱形的性質(zhì)即可求得結(jié)果.【詳解】(1)證明:(證法一)由旋轉(zhuǎn)可知,∴∴又∴即(證法二)由旋轉(zhuǎn)可知,而∴∴∴即(2)四邊形是菱形.證明:同理∴四邊形是平行四邊形.又∴四邊形是菱形(3)過點作于點,則在中,.由(2)知四邊形是菱形,∴∴【點睛】解答本題的關(guān)鍵是掌握好旋轉(zhuǎn)的性質(zhì),平行四邊形判定與性質(zhì),的菱形的判定與性質(zhì),選擇適當?shù)臈l件解決問題.26、(1)k=2;(2)點D經(jīng)過的路徑長為.【解析】
(1)根據(jù)題意求得點B的坐標,再代入求得k值即可;(2)設(shè)平移后與反比例函數(shù)圖象的交點為D′,由平移性質(zhì)可知DD′∥
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 感謝老師的發(fā)言稿15篇
- 心理健康觀后感
- 易錯題31 語言文字運用之詞語效果題-不結(jié)合文意分析詞語效果高考語文備戰(zhàn)2025年高考易錯題(新高考專用)含解析
- 愚人節(jié)日記資料
- 怦然心動觀后感(集合15篇)
- 投資管理公司介紹
- 怦然心動觀后感6篇
- 初級會計經(jīng)濟法基礎(chǔ)-初級會計《經(jīng)濟法基礎(chǔ)》點睛試卷13
- 中國發(fā)光二極管(LED)行業(yè)市場發(fā)展前景研究報告-智研咨詢發(fā)布
- 智研咨詢發(fā)布:2024年中國異丙醇行業(yè)競爭格局及發(fā)展前景研究報告
- 2025年度廚師職業(yè)培訓(xùn)學(xué)院合作辦學(xué)合同4篇
- 《組織行為學(xué)》第1章-組織行為學(xué)概述
- 市場營銷試題(含參考答案)
- 2024年山東省泰安市高考物理一模試卷(含詳細答案解析)
- 護理指南手術(shù)器械臺擺放
- 腫瘤患者管理
- 四川省成都市高新區(qū)2024年七年級上學(xué)期語文期末試卷【含答案】
- 2025年中國航空部附件維修行業(yè)市場競爭格局、行業(yè)政策及需求規(guī)模預(yù)測報告
- 國土空間生態(tài)修復(fù)規(guī)劃
- 1-1《送瘟神》課件-高教版中職語文職業(yè)模塊
- (高清版)DZT 0399-2022 礦山資源儲量管理規(guī)范
評論
0/150
提交評論