![廣告調(diào)查(第二版)英文 指導(dǎo)手冊 Davis-Instructors-Manual-ch15 Quantitative Data Analysis Descriptive Statistics_第1頁](http://file4.renrendoc.com/view3/M00/1B/12/wKhkFmYSWjGARpQpAAHzhWfkFAI546.jpg)
![廣告調(diào)查(第二版)英文 指導(dǎo)手冊 Davis-Instructors-Manual-ch15 Quantitative Data Analysis Descriptive Statistics_第2頁](http://file4.renrendoc.com/view3/M00/1B/12/wKhkFmYSWjGARpQpAAHzhWfkFAI5462.jpg)
![廣告調(diào)查(第二版)英文 指導(dǎo)手冊 Davis-Instructors-Manual-ch15 Quantitative Data Analysis Descriptive Statistics_第3頁](http://file4.renrendoc.com/view3/M00/1B/12/wKhkFmYSWjGARpQpAAHzhWfkFAI5463.jpg)
![廣告調(diào)查(第二版)英文 指導(dǎo)手冊 Davis-Instructors-Manual-ch15 Quantitative Data Analysis Descriptive Statistics_第4頁](http://file4.renrendoc.com/view3/M00/1B/12/wKhkFmYSWjGARpQpAAHzhWfkFAI5464.jpg)
![廣告調(diào)查(第二版)英文 指導(dǎo)手冊 Davis-Instructors-Manual-ch15 Quantitative Data Analysis Descriptive Statistics_第5頁](http://file4.renrendoc.com/view3/M00/1B/12/wKhkFmYSWjGARpQpAAHzhWfkFAI5465.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
AdvertisingResearch:Instructor’sManual
Copyright?2012PearsonEducation,Inc.publishingasPrenticeHall
PAGE
PAGE
AdvertisingResearch:Instructor’sManual
Copyright?2012PearsonEducation,Inc.publishingasPrenticeHall
15.QuantitativeDataAnalysis:DescriptiveStatistics
ChapterGoals
Thischapterisdividedintofivesections.Eachsectionisdesignedtohelpstudentsbetterunderstandtheprocessbywhichresearchersmovefromrawdatatomeaning.
? Thefirstsectionexplainsthefiveprimarymeasuresneededtoanalyzequantitativedata.
? Thesecondsectiondescribesthestartofthedataanalysisprocess,
focusingonhowtoensurethatdataisreliableenoughtoserveasthebasis
forsubsequentdecisions.
? ThethirdsectionshowshoweachofthespecifictypesofquestionsintroducedinChapter13areexaminedandanalyzed.
? Thefourthsectionshowshowtotakethelaststeptowarddatameaning,movingawayfromananalysisofthetotalsampleintoanalysesofsmallergroupsofrespondents.
? Thelastsectionbringsallofthepriorinformationtogetherthroughastep-by-stepdemonstrationoftheentiredataanalysisprocess.
NotestotheInstructor
TheChapterLectureprovidesaguidetokeytopicsandcontent.ThePowerPointslidesarenamed:davis_adresearch_ch15.ppt.
ChapterLecture
I.BasicMathandKeyMeasures
Slide15-
2
Slide15-
3
Fivebasicandeasytocomputemeasuresprovideallthemathneededtoderivemeaninginmostdataanalysissituations:percentage,averageormean,median,mode,andstandarddeviation.
A.Percentage
Thinkofascoreonanexam.Tocalculatepercentagedividenumberofcorrect
answersbytotalnumberofquestions,andthenmultiplyby100.Sixteencorrectanswersoutoftwentywouldgiveyouascoreof80%.
Slide15-
4
Slide15-
5
Slide15-
6
Slide15-
7
Slide15-
8
Slide15-
9
Useofpercentagesforanalysisofsurveydataworksexactlythesameway:dividenumberofpeoplegivingaparticularresponsebytotalnumberofpeopleansweringquestion.TableshowninSlide15-4showshowthisisdone.
? Firstcolumnshowsthepossibleanswerstothesurveyquestion,
? Secondcolumnshowsnumberofpeopleselectingeachoption,and
? Lastcolumnshowspercentageofpeopleselectingeachoption.Totalofthepercentagecolumnshouldalwaysaddupto100%.
Ifthesurveyusesoneoftheonlinesurveysites,thesitewillautomaticallyprovidepercentages.Slide15-5isexampleofasurveywith10respondents.Zoomerang’spresentationofresultsshowsthepercentageofrespondentsselectingeachoptionforeachquestion.
B.Average
Calculateanaverageforasurveyquestioninmuchsamewayasyoucalculateaclassaverage,exceptinthecaseofsurveyquestionswedividethetotalnumberofpointsforthequestionbythetotalnumberofpeopleansweringthequestion.ConsiderquestionshowninSlide15-6.
Eachresponseoptionhasbeenassignedavalue.Tenconsumersratethecommercialasfollows:1,2,3,2,3,4,42,1,2.Theaveragerelevanceratingwouldbe2.4,calculatedbydividingthesumofalloftheindividualscores,24,bythenumberofpeopleansweringquestion,10.
C.MedianandMode
Medianisanumberthatappearsinthemiddleofanorderedsetofdatawhenthescoresareorderedfromlowesttohighest.
Fivepeopleprovideage:21,23,25,26,99.Theaverageagewouldbe38.8.Butthisaverageseemsnottofitthedata,asnorespondenthasanagearound
39andinfactfouroutoffiveareaged26oryounger.Averageishighbecauseofindividualaged99.
Medianagewouldbe25;obtainedbyfirstputting/makingcertainscoresareinorder,thenfindingthescorethatisinthemiddle.Thisnumber(25)ismuchmorerepresentativeoftheagesinthedatasetversustheaverage.
Whenyouhaveanaveragethatisdistortedbyafeweitherveryhighorverylowscores,thenmedianoftenbecomesbetterwaytosummarizesetofscores.
Slide15-
10
Slide15-
11
Slide15-
12
Slide15-
13
Slide15-
14
Slide15-
15
? Whenyouhaveanoddnumberofscores,medianisthescoreexactlyinthemiddleoftheorderedsetofdata.
? Whenyouhaveanevennumberofscores,themedianistheaverageofthetwomiddlescores.
Modeisthenumberinasetofresponsesthatappearsmostoften.Modeisusefulwhenyouneedtoknowmostfrequentresponse.
ModefordatashowninSlide15-12wouldbe“1”representing“Agree.”
D.RelationshipofMean,MedianandMode
Mean,median,andmodeeachprovideadifferentinsightintoasetofscores’distribution.Imagine100studentstakeanexam.Distributionofexamscoresissymmetricalwhenmean,median,andmodearenearlyidentical.Inthesecases:(1)distributiontorightofmean,median,andmodeisanearmirrorimageofdistributiontotheleftofthesemeasuresand(2)majorityofscoresfallintothecenterofdistribution.Thisdistributionistypical“bellcurve.”Whendistributionis(orisnear)symmetricalthenmeanisanaccurateandpreferreddescriptorofdistribution.
Distributionsdonothavetobesymmetrical.
? Distributionsinwhichthevalueofthemodefallsbelowtheme-dianthatinturnfallsbelowmeanskewsleft.Distributionhasalargenumberofvaluesatlowerendofdistributionandfewvaluesatthehighendofdistribution.
? Distributioninwhichthevalueofthemodefallsabovemedianthatsubsequentlyfallsabovethemeanskewsright.Distributionhasalargenumberofvaluesathighendofdistributionandfewvaluesatlowendofdistribution.
Themoreskewedthedistribution,thelesswellthemeanprovidesagoodsummaryofthatdistribution.Asaresult,forheavilyskeweddistributions,eithermedianormodeisoftenpreferreddescriptorversusaverage.
E.StandardDeviation
Standarddeviationisameasureofdispersion.Dispersionreferstohowspreadoutorclusteredasetofscoresisaroundthemean.
Slide15-
16
Slide15-
17
Slide15-
ConsiderdatashowninSlide15-16.Datarepresentsfiftyconsumers’purchaseintentafterseeingoneofthreecommercials.Dataineachcolumnrepresentspercentageofselectingeachresponse.Dataonthebottomofthetablereportsmeanpurchaseintentforeachcommercial.
Meanpurchaseintentforeachcommercialisidenticalinspiteofthefactthatunderlyingdistributionsarequitedifferent.ResponsestoAd1areevenlyspreadoutamongresponseoptions.ResponsestoAd2fallexclusivelyattheendsofthepurchaseintentscale.ResponsestoAd3resembleabellcurve.
Standarddeviationisawaytounderstandandcomparedistributionsofscoreswithouthavingtoactuallyplotandexamineeachandeveryscore.Foranyparticularscale,thegreaterthestandarddeviation,thegreaterthedispersionofscoresandasaresult,thelessaccuratethemeanforsummarizingasetofscores.ThetableshowninSlide15-17addsstandarddeviation.
StandarddeviationissmallestforAd3,largerforAd1andmuchlargerforAd
2.Aresearcherwouldconcludethatunderlyingpatternsofresponsetothethreecommercialsareverydifferent,andasaresult,needstolookdeeperintotheresponsepattern.OnlyinthecaseofAd3isthemeanagoodsummary
measureofthedistribution.
Itisimportanttorememberthatincomparingstandarddeviations,anyparticularstandarddeviationisareflectionoftheunderlyingscale.Standarddeviationscannotbecomparedwhenscaleshavedifferentnumbersofoptions.
II.MakingCertainYouHaveGoodData
Successfuladvertisingandrelateddecisionsarebasedongood(i.e.,correctandappropriate)responses.Tomakecertaindatais“good”youmust“clean”yourdatapriortoconductinganyanalyses.
A.DataReview,DecisionsandEditing
Firststepinpreparingdataistocheckresponsestoeachquestion,lookingforquestionsthathavealargenumberofmissingresponsesorquestionsthathaveodd,inappropriate,orunexpectedresponses.Youcanperformthisbyexaminingeachquestion’spercentagedistributions.Youmustdecidewhichquestionsareproblematicandwhattodowitheach:acceptasis,eliminateoredit.
ConsiderinformationprovidedbyZoomerangforfourquestions.
? Question1focusesonbeeradvertiser’scompetition.Almostall
18
Slide15-
19
Slide15-
20
Slide15-
21
whoansweredquestion(90%)choseHeinekin.Whilethishighpercentagemightnotbeexpected,dataappearstobe“good”astheredoesnotappeartobeanyproblemwithquestionwordingorresponseoptions.Appropriatedecisionatthispointwouldbetoacceptandusedataasis.
? Question2showsthesamepatternofresponseasQuestion1.
Allrespondentschosejustoneresponse.Aclosereviewofthis
question’sresponseoptionsshowsthatthereweretypographicalerrors-thefinaltwooptionsshouldhaveread“unimportant”insteadof“important.”Asaresult,scaleisincorrectanddatafromthisquestionisnotuseable.
? Question3isaproblem,butforadifferentreason.Whiletenindividualscomprisetotalsampleonlytwoindividualsansweredthisquestion.Anyquestionthathasahighnumberof“noresponses”shouldbeeliminatedfromanalysis.
? Question4illustratesanadditionalproblem.Tworespondentsprovidedanswersthatseemunreasonable.Youcanexaminethetotalpatternofresponseforthesetwoindividuals:ifpatternseemsreasonableyoucanacceptdataasis;ifthepatternseemsreasonablebutthisonemeasureseemsoddorinconsistentyoucanrecodetheresponseas“missing”;orifthepatternofresponseisproblematicacrossanumberofquestions,youcaneliminatetherespondentfromthesample.
Examinationofdataonquestionlevelshouldbefollowedbyareviewofeachrespondent’sindividualpatternofresponse.Here,lookingforanyrespondentswhohavealargenumberofmissingoroddresponsesacrossallsurveyquestions.
ImagineacasewheretenrespondentsareaskedtorateYouTube.Analysisofeachquestionshowsarangeofresponseand80%oftotalsampleansweredeachquestions.Analysisonthislevelappearspositive.
Thingsaredifferent,however,onindividualrespondentlevel.
Slide15-21showsresponsesofeachrespondentonthefoursurveyquestions.Dataindicatesthatthefirstsixrespondentsansweredallofthequestionswhilerespondentsnineandtenonlyansweredhalfofthequestions.
? Researcherstypicallydeletefromsamplerespondentswhohavefailedtoansweralargenumberofquestions.
Additionally,responsesofrespondentsfiveandsixalsoappeartobeaproblem,aseachindividualgaveexactsameanswertoallquestions.
? Wheneveryansweristhesame,itisquitelikelythattherespondentdidnotgivethesurveyfullattentionandresponsesareprobablynotvalid.Theserespondentsshouldalsobeeliminatedpriortodataanalysis.
III.DataAnalysisforSpecificQuestionTypes
UsequestionsfromBeboresearchstudy.[MakecertainstudentshaveFigure
15.7availableforreference.]
A.Classification,ChecklistandOtherNominalLevelQuestions
Slide15-
22
Slide15-
23
Slide15-
24
Slide15-
25
Slide15-
26
Questions1through3arenominallevelquestions.Becausenumbersusedtocoderesponsestonominallevelquestionshavenointrinsicmeaning,averagesareinappropriate.Instead,mostcommonlyusepercentages(showninSlide15-
22).
Initialreportingofpercentagesshouldalwayspresentthedataintheformcollectedbysurveyquestion.Next,summarizedatainwaysthatdonotdirectlycorrespondtotheoriginalresponsecategories.Here,originalresponsecategoriesarecombinedinlogicalfashionandtotalpercentagesfornewcategoriesarepresented.
? Responsestotheeducationalstatusquestioncanberecomputedtoallowforaneasiertoseecomparisonofthosewhoareinanytypeofschoolversusnoschool,asshowninSlide15-23or(asshowninSlide
15-24)tocomparesizeofgroupswhoarecurrentlynotenrolled,enrolledinhighschoolandenrolledinanytypeofcollege.
B.ChecklistQuestions
Question4,achecklist,measuresindividuals’reactionstoadvertisingonBebo.Thefirststepinanalysiscalculatesthepercentageofrespondentswhochecked
eachitem.TableshowninSlide15-25providesthisdata,presentingdatainthesameorderasitemsappearedonquestionnaire.
Thetableaccuratelypresentsdata.But,becausethereisnologicalorganizationtoordering,itisdifficulttoseeoverallpatternofresponse.
? ThetableinSlide15-26fixestheproblembyorderingitemsbyabsolutelevelofselection,makingiteasiertoseewhichitemshaverelativelymoreorlessagreement.
Slide15-
27
Slide15-
28
Slide15-
29
Slide15-
30
? ThetableshowninSlide15-27alsofixesproblembygroupingpositiveandnegativeitemstogether,makingiteasiertoseewhichpositiveandnegativeitemshaverelativelymoreagreement.
Presentationofpercentagesforchecklistitemsisoftensufficientfordiscoveringoverallpatternsofresponse.Anadditionalcomputation,whichcanprovidedeeperinsightintorespondents’thoughtsandattitudes,requiresthat
theresearcher(1)manipulatetherawdatafile,andthen(2)examineandthenclassifyingeachrespondent’spatternofresponseaccordingtoapredeterminedsetofcriteria.
Givenbothpositiveandnegativeitemsonachecklist,foranyindividualoneofthreepatternsofresponseispossible:
? arespondentchecksonlypositiveoptions
? arespondentchecksonlynegativeoptions
? arespondentchecksbothpositiveandnegativeoptions
Distinguishingbetweenthesethreetypesofindividualsisimportant,becauseitallowstheresearchertoidentifytherelativepercentofrespondentswhoareentirelypositive,entirelynegativeorwhohavemixedfeelings.
SurveyQuestion5onthesurveyasksrespondentstochecktheirfeelingstowardadvertisingthatappearsonMyAOL’shomepage.Atfirstglance,responsestoBebo(frompriorquestion)andMyAOLappeartobesimilar,asshownintableinSlide15-29.
Withoutfurtheranalysis,theresearchermightconcludethatreactionstoadvertisingontwosites’homepagesareidentical.However,thisconclusionprovesfalsewhenyouexaminethepercentageofpeoplewhoareentirelypositive,entirelynegativeorhavemixedreactions.ThisanalysisshowninSlide15-30.
Analysisshowsthatreactionstoadvertisingonthetwositesareverydifferent.Thesameproportionofsamplehadentirelypositiveattitudestowardtheadvertising.But,mostoftheremainingreactionstoBeboweremixed,withafewindividualshavingentirelynegativeattitudes.ReactionstoMyAOLwereverydifferent,withfewindividualshavingmixedfeelingsandmostindividualshavingentirelynegativereactions.DataindicatesthatMyAOL’shomepageadvertisingisperceivedasbeingmuchmoreofaproblemthanBebo’shomepageadvertising.Theseinsightsintoconsumers’attitudesweremasked
byinitialanalysisofindividualitempercentages.
C.RankingandOtherOrdinalLevelQuestions
Question6isarankorderquestion.Onlypercentages(andmediansandmodes)
areappropriate.
Thefirststepinanalysisofrankingdataisthecreationofapercentagedistri-butionthatreportsthenumberofeachrankingassignedtoeachrankeditem.Inthiscasewewanttocounthowmany“1,”“2,”and“3”ranksweregiventoeachofsocialnetworkingsites.
Slide15-
31
Slide15-
32
Slide15-
33
Thetableshowsthat380peoplegaveBeboarankingof‘1',80peoplegaveitarankingof'2',and40peoplegaveitarankingof'3'.Sinceall500peopleinthesampleprovidedrankings,totalrankingsforeachsiteaddsuptoatotalof500.
Thenextstepinanalysisandpresentationofrankingdataistranslationofeachfrequencydistributionintoapercentagedistributionforeachrankeditem.Thisisdonebydividingeachnumber(ofresponses)inacolumnbythetotalresponsesforthecolumn.ShowninSlide15-32.Datainthistableisreadbothdown(bycolumn)andacross(byrow).
Readingfromtoptobottomofeachcolumnshowspatternofresponseforeachsiteindependentoftheothersites.
Readingacrosswithinarowcomparesacrosssites.
Oncethesummarychartiscreated,additionalsummarymeasurescanbecalculatedtosimplifydataandassistincommunicatingkeyfindings.AsshowninSlide15-33,youcanaddasummarylinetothetablewhichpresentstheresultsofacomputationthatsubtractsthepercentageofworstrankings(inthiscase‘3’rankings)fromthepercentageofbest(‘1’)rankingsinordertoobtainanoverallassessmentofpositivepreference.Newmeasureiscalled“NetBestRankings”The66%reportedforBebo,forexample,iscomputedby
subtractingthepercentageof“3”rankingsfromthepercentageof“1”rankings,inthiscase76-8.
SummarymeasureclearlyreinforcespriorconclusionthatBebohasmostpreferredhomepage:onlyBebohadmoreindividualsgivingita“best”versusa“worst”ranking.
D.RatingScalesandOtherIntervalLevelQuestions
Questions7to9areratingscales.Themostcommonwaytoreportintervalleveldataisthroughpercentsandaverages.
Slide15-
34
Slide15-
35
Slide15-
36
Slide15-
37
Slide15-
38
Thefirststepinanalysisiscalculationofpercentofrespondentsselectingeachresponseoption,andcalculationofanoverallaverageandstandarddeviation(asshowninSlide15-34).ThemajorityofrespondentswerepositivetowardBebo’shomepage.Theaverageisnearthevalueofthe“SlightlyAgree”responseoption.
Afterdetaileddatahasbeenreportedforeachresponseoption,datacanthenbesimplifiedtomakeunderlyingtrendseasiertosee.Oneapproachistocombinechoicesthataredirectionallyrelated,inthiscasepositive“agree”choicesandnegative“disagree”choices(asshowninSlide15-35).
Also,similartotheapproachtakenforrankingdata,youcansubtractpercentageofnegativesfrompositivesinordertoobtainameasureofoverallpositiveresponses.
Eachofpriorapproachesprovideaslightlydifferentlookattheresponsestoeachindividualquestion.Whenthereisasetofmultiple,relatedquestions,itisoftenusefultoprepareasummarytablethatpresentsthekeyfindings.The
tableshowninSlide15-37presentssummarymeasuresforBebowhenreportingtheresponsestoQuestions7to9.Thismakesitveryeasytoseerelativestrengthsandweaknesses.
E.ConstantSumandOtherRatioLevelQuestions
Question10isaconstantsumquestion.Percentagesandaverages,aswellasmediansandmodes,areappropriateforsummarizingresponsestothistypeofquestion.
Thefirststepiscreationofadistributionthatreportstheaveragenumberofpointsgiventoeachlisteditem.Distributionfor500respondentswhorankedimportanceofeachsiteattributeisshowninSlide15-38.Notethatinpreparationofthistable:(a)thesumaddstothenumberofpoints(100)notthenumberofrespondentsand(b)theitemsevaluatedhavebeenplacedindescendingorder(tomaketheunderlyingtrendeasiertosee)ratherthanorderinwhichitemsappearedonthequestionnaire.
Thetableshowsthattheabilitytopostpicturesandblogwereperceivedasthemostimportantbenefits,receivingnearlythesameamountofhighpoints.Abilitytopostvideosandinstantmessagewereseenastheleastimportant.Theresearchermightconcludethatthefocusoneitherpostingpicturesorbloggingcouldsafelybeselectedassiteattributethatshouldbepromoted.But,withoutadditionalanalyses,itwouldbepremature(andthuspotentiallydangerous)todoso.
Additionalanalysesmakecertainthataveragesdonotleadtoerroneous
conclusions.Theyrequireanexaminationofeachofthedistributions.Oneapproachgroupspointallocationsintolargergroups,notingthepercentageofthesamplethatfallsintoeachgroup.Whenperformingthisanalysis,focusshiftsfromtheaveragingofpointstoanexaminationofthesample’sallocationbehavior.Thiscancreatetwocategoriesofresponse:
? Extremelyimportant:Percentofsamplewhoallocatedmorethan75%
ofpointstoanattribute
? Extremelyunimportant:Percentofsamplewhoallocatedlessthan25%
ofpointstoanattribute
Slide15-
39
Slide15-
40
Slide15-
41
TheresultsofthisanalysisareshownintheSlide15-39,wherepercentagesreflectpercentageofrespondentsfallingintoeachcategory.
Thetableindicatesthatinspiteoftheroughlyequivalentaveragenumberofpointsgiventopostingpicturesandblogging,theunderlyingpatternofresponsepresentsaquitedifferentpicture.Respondentswereoverwhelmingly
infavorofpostingpictures,with74%ofthesamplegivingit75ormorepoints
andonly15%ofthesamplegivingit25orfewerpoints.Thepaatternforbloggingisquitedifferent,withrelativelyequalnumbersofpeoplefeelingthatitwasimportantandunimportant.Postingpicturesisclearlythemorepowerfulbenefit.
IV.TheImportanceofSubgroupAnalysis
Priorapproachesentailedexamining,summarizing,andreportingtheresultsforthetotalsample.Thisisoftenusefultoexamineandcompareresponsesofsmallergroupsinsample.
Analysisofsmallersubgroupsoftenprovidesdeeperinsightsintodatatrendsandprovidesabasisfordrawingimportantmeaningfromthedata.Slide15-40illustrateshowyoungerindividualsareextremelynegativewhileolderindividualsareextremelypositive.
Youcantakesubgroupanalysestoanylevelofdetail.Prioranalysiscomparedtwoagegroups.But,youcanzoominevenfurthertodetermineifpositivereactionsof30to39yearoldsvaryasafunctionofeducation.Inthismoredetailedanalysis,youcancompareopinionsofindividualsaged30to39withacollegeeducationandthoseaged30to39withoutacollegeeducation.TableshowninSlide15-41accomplishesthis,whereitappearsthat(withinthisagegroup)lesswell-educatedindividualsaremorepositivethanthosewithacollegeeducation.
Guidelinesforsubgroupanalysis:
Slide15-
42
Slide15-
43
Slide15-
44
? Thinkaboutthedatafromtheresearchend-user’sperspective.
Whatquestionsaretheylikelytoask?Whatfindingswillthey
findmostintriguing?Whatfindingsaretheyleastlikelyto
accept?Whatdepthofdetailisrequiredformanagementtomakefullyinformeddecisions?Oncequestionsareanswered,thenconductappropriatesubgroupanalysestoprovidedetails.
? Lookfortheunexpected.Becreativeinquestionsasked;don’tjustfocusontheobviousoranticipatedfindings.Trytofindvaluablemeaninginthedatabydiscoveringunexpectedtrendsandrelationshipsinsubgroupanalyses.
? Beopen-minded.Whenyouseesomethingunexpected,takeastepbackandaskwhyresultsmightbeastheyare.Asknewquestionsandreformulateoldquestions.Answerthesequestionswiththeappropriatesubgroupanalyses.
? Besensitivetosamplesize.Sizeofindividualsubgroupstypicallydeclinesasgroupsbecomemorenarrowlydefined.Bewaryofanalyzinggroupsthatcontainsmallnumberofindividuals.
V.DataAnalysisinAction
A.Situation
Researchpriortoproductiontoidentifycommercial’sstrengthsandweaknesses.Twentyrespondentsaremembersoftheproduct’stargetaudience.Thesurveyusesfivemeasurestotestreactionstothecommercial.Thedatacollectedbythesemeasures,includingdemographicinformation,are:
? Respondentage
? Respondentgender
? Ratingofpurchaseintentafterseeingthecommercial
? Ratingofcommercialmessagebelievability
? Ratingofcommercialmessageuniqueness
? Reactionstothecommercial(twochecklistitems)
Alldatawerecollectedafteranindividualviewedtestcommercial.
B.TheAnalysis
Datacollectedfrom20respondentsshowninSlide15-44where:
? Ageiscoded“1”or“2,”wherea“1”represents25to34yearsoldand
“2”represents35to49yearsold
? Genderiscoded“1”or“2,”where“1”representsawomananda“2”
representsaman.
? Ratingsofpurchaseintent,messagebelievabilityandmessageuniquenessareallonafive-pointscalewherehighernumbersindicatemorepositiveresponses.
? Checklistreactionsusean“x”toindicateanitemwaschecked.A
blankspaceindicatesthatanitemwasnotchecked.
Onewaytoapproachdataanalysisistoimaginetypesofquestionsendusersofresearchwillaskandthencarryoutnecessarycomputationstoanswerthesequestions.Sincethisisacommercialtest,mostfundamentalquestionlikelytobeaskedbythosewhodesignedthecommercialis:Howdidthecommercialdo?
Theanswertothisquestionrequiresanexaminationofallofthemeasuresforthetotalsample,usingdescriptivestatisticstosummarizeresults.Thisprovidesafirstlookathowallrespondentsreactedtocommercial.Appropriatedescriptivestatisticsare:
Slide15-
45
Slide15-
46
? Purchaseintent(interval):Mean,percentage,median,mode
? Believability(interval):Mean,percentage,median,mode
? Uniqueness(interval):Mean,percentage,median,mode
? Checklistitems(nominal):Percentage
Withthisinmind,thebottomtworowsofpriortable(nowshowninSlide15-
46)presentappropriatedescriptivestatisticsforalltwentyindividuals.
Averageshavebeencalculatedonlyforintervallevelmeasures,notforgenderandage,whichwillbeusedasclassificationvariables.
Averagesandpercentagesindicatethatthecommercialperformedfairlywell.Purchaseintentwasatmidpointofscale,messagebelievabilitywashigh,andmessageuniquenesswasatmidpointofscale.Mostrespondentsfoundthecommercialinterestingandlessthanone-thirdfounditconfusing.
Atthispointitwouldbeeasytothinkthatthejobisdone.But,thiswouldbewrongconclusion-notbecausecalculationswereincorrect,butbecauseanalysisfailedtoanticipateadditionalquestions.Areasonablenextquestiontoaskwouldbe:Didthecommercialworkequallywellamongallmembersofthetargetaudience?
Slide15-
47
Slide15-
48
Slide15-
ThetableinSlide15-47looksattheagesubgroupsdetermined.Itshowsoriginaldatasetdividedintotwoagegroups.Allinyoungergroup(thosecodedwitha“1”forage)havebeenplacedtogetherinonegroupwhileallinoldergroup(thosecodedwitha“2”forage)havealsobeengroupedtogether.Descriptivestatisticsarecalculatedforeachgroup.Thereappearstobenodifferenceincommercialperformancebyagegroup:
? Averagesforratingscalesareidentical(purchaseintentforbothagegroupsequals3.1;messagebelievabilityforbothagegroupsequals4.2;messageuniquenessforbothagegroupsequals3.1).
? Percentagesofrespondentsineachgroupwhosaythecommercialisinteresting(80%)and“confusing(30%)arethesame.
Itthereforeappearsthatthecommercia
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物流管理中的客戶服務(wù)優(yōu)化
- 現(xiàn)代醫(yī)療辦公環(huán)境的電氣化改造
- 國慶節(jié)包廂套餐活動方案
- 2024年五年級品社下冊《祖國不會忘記他們》說課稿 山東版
- 2023二年級數(shù)學(xué)上冊 6 表內(nèi)乘法(二)綜合與實踐 量一量比一比說課稿 新人教版
- 1 北京的春節(jié) 說課稿-2023-2024學(xué)年語文六年級下冊統(tǒng)編版
- 9《生活離不開他們》 感謝他們的勞動 說課稿-2023-2024學(xué)年道德與法治四年級下冊統(tǒng)編版
- Unit 2 Weather Lesson 1(說課稿設(shè)計)-2023-2024學(xué)年人教新起點版英語二年級下冊001
- 2024年高中英語 Unit 3 Welcome to the unit and reading I說課稿 牛津譯林版選擇性必修第二冊
- 2024-2025學(xué)年高中歷史 第五單元 經(jīng)濟(jì)全球化的趨勢 第26課 經(jīng)濟(jì)全球化的趨勢(1)教學(xué)說課稿 岳麓版必修2
- 二零二五年度大型自動化設(shè)備買賣合同模板2篇
- 江西省部分學(xué)校2024-2025學(xué)年高三上學(xué)期1月期末英語試題(含解析無聽力音頻有聽力原文)
- GA/T 2145-2024法庭科學(xué)涉火案件物證檢驗實驗室建設(shè)技術(shù)規(guī)范
- 寵物護(hù)理行業(yè)客戶回訪制度構(gòu)建
- 電廠檢修管理
- 機(jī)動車屬性鑒定申請書
- 2024年中考語文試題分類匯編:非連續(xù)性文本閱讀(學(xué)生版)
- 2024年度窯爐施工協(xié)議詳例細(xì)則版B版
- 2024年北京市平谷區(qū)中考英語二模試卷
- 第一屆山東省職業(yè)能力大賽濟(jì)南市選拔賽制造團(tuán)隊挑戰(zhàn)賽項目技術(shù)工作文件(含樣題)
- 尿毒癥替代治療
評論
0/150
提交評論