版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024年北京市東城區(qū)五十中學八年級下冊數(shù)學期末達標檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.某商場試銷一種新款襯衫,一周內售出型號記錄情況如表所示:型號(厘米)383940414243數(shù)量(件)25303650288商場經理要了解哪種型號最暢銷,則上述數(shù)據(jù)的統(tǒng)計量中,對商場經理來說最有意義的是()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差2.若,則下列不等式成立的是()A. B. C. D.3.如果分式有意義,那么x的取值范圍是()A.x≠0 B.x≤﹣3 C.x≥﹣3 D.x≠﹣34.如圖,在正方形中,是上的一點,且,則的度數(shù)是()A. B. C. D.5.一個多邊形的每一個外角都等于它相鄰的內角的一半,則這個多邊形的邊數(shù)是()A.3 B.4 C.5 D.66.為參加學校舉辦的“詩意校園?致遠方”朗誦藝術大賽,八年級“屈原讀書社”組織了五次選拔賽,這五次選拔賽中,小明五次成績的平均數(shù)是90,方差是2;小強五次成績的平均數(shù)也是90,方差是14.1.下列說法正確的是()A.小明的成績比小強穩(wěn)定B.小明、小強兩人成績一樣穩(wěn)定C.小強的成績比小明穩(wěn)定D.無法確定小明、小強的成績誰更穩(wěn)定7.如圖所示,在?ABCD中,分別以AB,AD為邊向外作等邊△ABE,△ADF,延長CB交AE于點G,點G在點A,E之間,連接CG,CF,則下列結論不一定正確的是()A.△CDF≌△EBCB.∠CDF=∠EAFC.CG⊥AED.△ECF是等邊三角形8.若一次函數(shù)的圖象上有兩點,則下列大小關系正確的是()A. B. C. D.9.一次函數(shù)y=﹣2x+1的圖象不經過()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.圖中的兩個三角形是位似圖形,它們的位似中心是()A.點P B.點DC.點M D.點N11.如圖,已知一次函數(shù)的圖像與軸,軸分別交于,兩點,與反比例函數(shù)在第一象限內的圖像交于點,且為的中點,則一次函數(shù)的解析式為()A. B. C. D.12.下列說法中,錯誤的是()A.平行四邊形的對角線互相平分B.對角線互相平分的四邊形是平行四邊形C.菱形的對角線互相垂直D.對角線互相垂直的四邊形是菱形二、填空題(每題4分,共24分)13.一個正多邊形的每個外角等于72°,則它的邊數(shù)是__________.14.已知點(-1,y1),(2,y2),(3,y3)在反比例函數(shù)y=的圖象上,則用“<”連接y1,y2,y3的結果為_______.15.如圖,把Rt△ABC放在直角坐標系內,其中∠CAB=90°,BC=5,點A,B的坐標分別為(1,0),(4,0),將△ABC沿x軸向右平移,當C點落在直線y=2x-6上時,線段BC掃過的區(qū)域面積為________.16.已知菱形ABCD的兩條對角線分別為6和8,M、N分別是邊BC、CD的中點,P是對角線BD上一點,則PM+PN的最小值=___.17.當__________時,分式有意義.18.與最簡二次根式是同類二次根式,則a=__________.三、解答題(共78分)19.(8分)為了更好治理河流水質,保護環(huán)境,某市治污公司決定購買10臺污水處理設備,現(xiàn)有A,B兩種型號的設備,其中每臺的價格,月處理污水量如表:
A型
B型
價格(萬元/臺)
a
b
處理污水量(噸/月)
220
180經調查:購買一臺A型設備比購買一臺B型設備多3萬元,購買2臺A型設備比購買3臺B型設備少3萬元.(1)求a,b的值;(2)經預算:市治污公司購買污水處理設備的資金不超過100萬元,你認為該公司有哪幾種購買方案;(3)在(2)問的條件下,若每月要求處理的污水量不低于1880噸,為了節(jié)約資金,請你為治污公司設計一種最省錢的購買方案.20.(8分)先化簡再求值:,其中a=3.21.(8分)已知(如圖),在四邊形ABCD中AB=CD,過A作AE⊥BD交BD于點E,過C作CF⊥BD交BD于F,且AE=CF.求證:四邊形ABCD是平行四邊形.22.(10分)定向越野作為一種新興的運動項目,深受人們的喜愛.這種定向運動是利用地圖和指北針到訪地圖上所指示的各個點標,以最短時間按序到達所有點標者為勝.下面是我區(qū)某校進行定向越野活動中,中年男子組的成績(單位:分:秒).9:0114:459:4619:2211:2018:4711:4012:3211:5213:4522:2715:0017:3013:2218:3410:4519:2416:2621:3315:3119:5014:2715:5516:0720:4312:1321:4114:5711:3912:4512:5715:3113:2014:5014:579:4112:1314:2712:2512:38例如,用時最少的趙老師的成績?yōu)?:01,表示趙老師的成績?yōu)?分1秒.以下是根據(jù)某校進行定向越野活動中,中年男子組的成績中的數(shù)據(jù),繪制的統(tǒng)計圖表的一部分.某校中年男子定向越野成績分段統(tǒng)計表分組/分頻數(shù)頻率9≤x<1140.111≤x<13b0.27513≤x<1590.22515≤x<176d17≤x<1930.07519≤x<2140.121≤x<2330.075合計ac(1)這組數(shù)據(jù)的極差是____________;(2)上表中的a=____________,b=____________,c=____________,d=____________;(3)補全頻數(shù)分布直方圖.23.(10分)為了從甲、乙兩名學生中選拔一人參加射擊比賽,對他們的射擊水平進行了測驗,兩人在相同條件下各射靶10次,命中的環(huán)數(shù)如下:甲:7、8、6、8、6、5、9、10、7、4乙:9、5、7、8、7、6、8、6、7、7如果你是教練你會選拔誰參加比賽?為什么?24.(10分)如圖,四邊形為正方形.在邊上取一點,連接,使.(1)利用尺規(guī)作圖(保留作圖痕跡):分別以點、為圓心,長為半徑作弧交正方形內部于點,連接并延長交邊于點,則;(2)在前面的條件下,取中點,過點的直線分別交邊、于點、.①當時,求證:;②當時,延長,交于點,猜想與的數(shù)量關系,并說明理由.25.(12分)已知:ABCD的兩邊AB,AD的長是關于x的方程的兩個實數(shù)根.(1)當m為何值時,四邊形ABCD是菱形?(2)若AB的長為2,那么ABCD的周長是多少?26.關于x的方程ax2+bx+c=0(a0).(1)已知a,c異號,試說明此方程根的情況.(2)若該方程的根是x1=-1,x2=3,試求方程a(x+2)2+bx+2b+c=0的根.
參考答案一、選擇題(每題4分,共48分)1、C【解析】分析:商場經理要了解哪些型號最暢銷,所關心的即為眾數(shù).詳解:根據(jù)題意知:對商場經理來說,最有意義的是各種型號的襯衫的銷售數(shù)量,即眾數(shù).故選C.點睛:此題主要考查統(tǒng)計的有關知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)方差等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.2、A【解析】
根據(jù)不等式的基本性質逐一判斷即可.【詳解】A.將已知不等式的兩邊同時加上5,得,故本選項符合題意;B.將已知不等式的兩邊同時乘,得,故本選項不符合題意;C.將已知不等式的兩邊同時乘,得,故本選項不符合題意;D.不能得出,故本選項不符合題意.故選A.【點睛】此題考查的是不等式的變形,掌握不等式的基本性質是解決此題的關鍵.3、D【解析】
根據(jù)分式有意義的條件可得x+3≠0,再解即可.【詳解】由題意得:x+3≠0,解得:x≠3,故選D.4、B【解析】
在正方形中可知∠BAC=45°,由AB=AE,進而求出∠ABE,又知∠ABE+∠EBC=90°,故能求出∠EBC.【詳解】解:在正方形ABCD中,∠BAC=45°,∵AB=AE,∴∠ABE=∠AEB=67.5°,∵∠ABE+∠EBC=90°,∴∠EBC=22.5°,故選B.【點睛】本題主要考查正方形的性質,等腰三角形的性質等知識點,熟練掌握基礎知識是解題關鍵.5、D【解析】
先根據(jù)多邊形的內角和外角的關系,求出一個外角.再根據(jù)外角和是固定的310°,從而可代入公式求解.【詳解】解:設多邊形的一個內角為2x度,則一個外角為x度,依題意得
2x+x=180°,
解得x=10°.
310°÷10°=1.
故這個多邊形的邊數(shù)為1.
故選D.【點睛】本題考查了多邊形的內角與外角關系、方程的思想,記住多邊形的一個內角與外角互補、及外角和的特征是關鍵.6、A【解析】
方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越??;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.【詳解】∵小明五次成績的平均數(shù)是90,方差是2;小強五次成績的平均數(shù)也是90,方差是14.1.平均成績一樣,小明的方差小,成績穩(wěn)定,故選A.【點睛】本題考查方差、平均數(shù)的定義,解題的關鍵是熟練掌握基本知識,屬于中考基礎題.
錯因分析容易題.失分原因是方差的意義掌握不牢.
7、C【解析】
A.在平行四邊形ABCD中,∠ADC=∠ABC,AD=BC,CD=AB,∵△ABE、△ADF都是等邊三角形,∴AD=DF,AB=EB,∠ADF=∠ABE=60°,∴DF=BC,CD=BC,∴∠CDF=360°-∠ADC-60°=300°-∠ADC,∠EBC=360°-∠ABC-60°=300°-∠ABC,∴∠CDF=∠EBC,在△CDF和△EBC中,DF=BC,∠CDF=∠EBC,CD=EB,∴△CDF≌△EBC(SAS),故A正確;B.在平行四邊形ABCD中,∠DAB=180°-∠ADC,∴∠EAF=∠DAB+∠DAF+∠BAE=180°-∠ADC+60°+60°=300°-∠ADC,∴∠CDF=∠EAF,故B正確;C..當CG⊥AE時,∵△ABE是等邊三角形,∴∠ABG=30°,∴∠ABC=180°-30°=150°,∵∠ABC=150°無法求出,故C錯誤;D.同理可證△CDF≌△EAF,∴EF=CF,∵△CDF≌△EBC,∴CE=CF,∴EC=CF=EF,∴△ECF是等邊三角形,故D正確;故選C.點睛:本題考查了全等三角形的判定、等邊三角形的判定和性質、平行四邊形的性質等知識,綜合性強.考查學生綜合運用數(shù)學知識的能力.根據(jù)題意,結合圖形,對選項一一求證,判定正確選項.8、B【解析】
首先觀察一次函數(shù)的x項的系數(shù),當x項的系數(shù)大于0,則一次函數(shù)隨著x的增大而增大,當x小于0,則一次函數(shù)隨著x的減小而增大.因此只需要比較A、B點的橫坐標即可.【詳解】解:根據(jù)一次函數(shù)的解析式可得此一次函數(shù)隨著x的增大而減小因為根據(jù)-2<1,可得故選B.【點睛】本題主要考查一次函數(shù)的一次項系數(shù)的含義,這是必考點,必須熟練掌握.9、C【解析】
先根據(jù)一次函數(shù)y=﹣2x+1中k=﹣2,b=1判斷出函數(shù)圖象經過的象限,進而可得出結論.【詳解】解:∵一次函數(shù)y=﹣2x+1中k=﹣2<0,b=1>0,∴此函數(shù)的圖象經過一、二、四象限,不經過第三象限.故選C.【點睛】本題考查的是一次函數(shù)的性質,即一次函數(shù)y=kx+b(k≠0)中,當k<0,b>0時,函數(shù)圖象經過一、二、四象限.10、A【解析】試題分析:根據(jù)位似變換的定義:對應點的連線交于一點,交點就是位似中心.即位似中心一定在對應點的連線上.解:∵位似圖形的位似中心位于對應點連線所在的直線上,點M、N為對應點,所以位似中心在M、N所在的直線上,因為點P在直線MN上,所以點P為位似中心.故選A.考點:位似變換.11、B【解析】
先確定B點坐標,根據(jù)A為BC的中點,則點C和點B關于點A中心對稱,所以C點的縱坐標為4,再利用反比例函數(shù)圖象上點的坐標特征可確定C點坐標,然后把C點坐標代入y=kx-4即可得到k的值,即可得到結論.【詳解】把x=0代入y=kx?4得y=?4,則B點坐標為(0,?4),∵A為BC的中點,∴C點的縱坐標為4,把y=4代入y=得x=2,∴C點坐標為(2,4),把C(2,4)代入y=kx?4得2k?4=4,解得k=4,∴一次函數(shù)的表達式為y=4x?4,故選:B.【點睛】此題考查反比例函數(shù)與一次函數(shù)的交點問題,解題關鍵在于求出k值12、D【解析】試題分析:A.平行四邊形的對角線互相平分,說法正確;B.對角線互相平分的四邊形是平行四邊形,說法正確;C.菱形的對角線互相垂直,說法正確;D.對角線互相垂直的四邊形是菱形,說法錯誤.故選D.考點:1.平行四邊形的判定;2.菱形的判定.二、填空題(每題4分,共24分)13、1【解析】
根據(jù)題意利用多邊形的外角和是360°,這個正多邊形的每個外角相等,因而用360°除以外角的度數(shù),就得到外角的個數(shù),外角的個數(shù)就是多邊形的邊數(shù).【詳解】解:360÷72=1.故它的邊數(shù)是1.故答案為:1.【點睛】本題考查多邊形內角與外角,根據(jù)正多邊形的外角和求多邊形的邊數(shù)是解題的關鍵.14、y2<y3<y1【解析】試題分析:∵反比例函數(shù)y=中,﹣k2﹣1<0,∴函數(shù)圖象的兩個分式分別位于二、四象限,且在每一象限內y隨x的增大而增大,∵﹣1<0,∴點A(﹣1,y1)位于第二象限,∴y1>0;∵0<2<3,∴B(1,y2)、C(2,y3)在第四象限,∵2<3,∴y2<y3<0,∴y2<y3<y1.考點:反比例函數(shù)圖象上點的坐標特征.15、5【解析】解:如圖所示.∵點A、B的坐標分別為(1,0)、(4,0),∴AB=1.∵∠CAB=90°,BC=3,∴AC=4,∴A′C′=4.∵點C′在直線y=4x﹣6上,∴4x﹣6=4,解得x=3.即OA′=3,∴CC′=3﹣1=4,∴S?BCC′B′=4×4=5(cm4).即線段BC掃過的面積為5cm4.故答案為5.16、1.【解析】
作M關于BD的對稱點Q,連接NQ,交BD于P,連接MP,此時MP+NP的值最小,連接AC,求出CP、PB,根據(jù)勾股定理求出BC長,證出MP+NP=QN=BC,即可得出答案.【詳解】解:作M關于BD的對稱點Q,連接NQ,交BD于P,連接MP,此時MP+NP的值最小,連接AC,∵四邊形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M為BC中點,∴Q為AB中點,∵N為CD中點,四邊形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四邊形BQNC是平行四邊形,∴NQ=BC,∵四邊形ABCD是菱形,∴CP=AC=3,BP=BD=4,在Rt△BPC中,由勾股定理得:BC=1,即NQ=1,∴MP+NP=QP+NP=QN=1,故答案為1【點睛】本題考查軸對稱-最短路線問題;菱形的性質.17、≠【解析】若分式有意義,則≠0,∴a≠18、1.【解析】
先將化成最簡二次根式,然后根據(jù)同類二次根式得到被開方數(shù)相同可得出關于a的方程,解出即可.【詳解】∵與最簡二次根式是同類二次根式,且=1,∴a+1=3,解得:a=1.故答案為1.【點睛】本題考查了同類二次根式的定義:化成最簡二次根式后,被開方數(shù)相同,這樣的二次根式叫做同類二次根式.三、解答題(共78分)19、(1);(2)有四種購買方案:①A型設備0臺,B型設備10臺;②A型設備1臺,B型設備9臺;③A型設備2臺,B型設備8臺;④A型設備1臺,B型設備7臺;(1)為了節(jié)約資金,應選購A型設備2臺,B型設備8臺.【解析】
(1)購買A型的價格是a萬元,購買B型的設備b萬元,根據(jù)購買一臺A型號設備比購買一臺B型號設備多1萬元,購買2臺A型設備比購買1臺B型號設備少1萬元,可列方程組求解.(2)設購買A型號設備x臺,則B型為(10-x)臺,根據(jù)使治污公司購買污水處理設備的資金不超過100萬元,進而得出不等式.(1)利用每月要求處理污水量不低于1880噸,可列不等式求解.【詳解】解:(1)根據(jù)題意得:,解得:;(2)設購買污水處理設備A型設備x臺,B型設備(10-x)臺,根據(jù)題意得,12x+9(10-x)≤100,∴x≤,∵x取非負整數(shù),∴x=0,1,2,1∴10-x=10,9,8,7∴有四種購買方案:①A型設備0臺,B型設備10臺;②A型設備1臺,B型設備9臺;③A型設備2臺,B型設備8臺.④A型設備1臺,B型設備7臺;(1)由題意:220x+180(10-x)≥1880,∴x≥2,又∵x≤,∴x為2,1.當x=2時,購買資金為12×2+9×8=96(萬元),當x=1時,購買資金為12×1+9×7=99(萬元),∴為了節(jié)約資金,應選購A型設備2臺,B型設備8臺.【點睛】本題考查了一元一次不等式的應用,根據(jù)購買一臺A型號設備比購買一臺B型號設備多1萬元,購買2臺A型設備比購買1臺B型號設備少1萬元和根據(jù)使治污公司購買污水處理設備的資金不超過100萬元,若每月要求處理洋瀾湖的污水量不低于1880噸,等量關系和不等量關系分別列出方程組和不等式求解.20、,.【解析】
根據(jù)分式的減法和除法可以化簡題目中的式子,然后將a的值代入化簡后的式子即可解答本題.【詳解】原式====.當a=3時,原式==.【點睛】本題考查了分式的化簡求值,解答本題的關鍵是明確分式化簡求值的方法.21、見解析【解析】
由垂直得到∠AEB=∠CFD=90°,然后可證明Rt△ABE≌Rt△CDF,得到∠ABE=∠CDF,然后證明AB∥CD,再根據(jù)平行四邊形的判定判斷即可.【詳解】解:證明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF,∴∠ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四邊形ABCD是平行四邊形.【點睛】本題考查了平行四邊形的判定,平行線的性質,全等三角形的性質和判定等知識點的應用,關鍵是推出∠ABE=∠CDF,主要考查學生運用性質進行推理的能力.22、見解析【解析】
(1)先找出這組成績的最大值與最小值,計算即可得;(2)根據(jù)分組“9≤x<11”的頻數(shù)與頻率可求得a的值,然后用a乘0.275可求得b的值,用6除以a可得d,把所有頻率相加可求得c,據(jù)此填空即可;(3)根據(jù)b的值補全圖形即可.【詳解】(1)這組數(shù)據(jù)的最大值為22:27,最小值為9:01,所以極差為:22:27-9:01=13:26,故答案為:13:26或13分26秒;(2)a=4÷0.1=40,b=40×0.275=11,d=6÷40=0.15,c=0.1+0.275+0.225+0.15+0.075+0.1+0.075=1,故答案為:40,11,1,0.15.(3)如圖所示.【點睛】本題考查了極差、頻數(shù)分布表、頻數(shù)分布直方圖,熟練掌握頻數(shù)、頻率與總數(shù)間的關系是解題的關鍵.23、乙同學的成績較穩(wěn)定,應選乙參加比賽【解析】試題分析:比較甲、乙兩人的成績的方差作出判斷.試題解析:=(7+8+6+8+6+5+9+10+4+7)=7;
S甲2=[(7-7)2+(8-7)2+(6-7)2+(8-7)2+(6-7)2+(5-7)2+(9-7)2+(10-7)2+(4-7)2+(7-7)2]=3;=(9+5+7+8+6+8+7+6+7+7)=7;
S乙2=[(9-7)2+(5-7)2+(7-7)2+(8-7)2+(6-7)2+(8-7)2+(7-7)2+(6-7)2+(7-7)2+(7-7)2]=1.2;
∴因為甲、乙兩名同學射擊環(huán)數(shù)的平均數(shù)相同,乙同學射擊的方差小于甲同學的方差,
∴乙同學的成績較穩(wěn)定,應選乙參加比賽.24、(1)作圖見解析;(2)①見解析;②數(shù)量關系為:或.理由見解析;【解析】
(1)按照題意,尺規(guī)作圖即可;(2)連接PE,先證明PQ垂直平分BE,得到PB=PE,再證明,得到,利用在直角三角形中,30°所對的直角邊等于斜邊的一半,即可解答;(3)NQ=2MQ或NQ=MQ,分兩種情況討論,作輔助線,證明,即可解答.【詳解】(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030全球蒸汽甲烷重整藍氫行業(yè)調研及趨勢分析報告
- 2025年全球及中國寵物蔓越莓補充劑行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球可調節(jié)軌道燈行業(yè)調研及趨勢分析報告
- 2025年全球及中國核電用金屬管行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球可見光波段高光譜成像(HSI)設備行業(yè)調研及趨勢分析報告
- 2025-2030全球玻璃煙斗行業(yè)調研及趨勢分析報告
- 2025年全球及中國魚雷泵行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球I型陽極氧化服務行業(yè)調研及趨勢分析報告
- 2025農村買房子合同范本
- 工程汽車租賃合同范本
- 特教教師的教育科研
- ASME B16.5-16.47法蘭尺寸對照表
- 對外漢語詞匯教學(第二版)PPT完整全套教學課件
- 產品報價單(5篇)
- 康復護理練習題庫(附答案)
- 不銹鋼欄桿施工工藝
- 陜西演藝集團有限公司招聘筆試題庫2023
- 小型餐飲店退股協(xié)議書
- 第九講 全面依法治國PPT習概論2023優(yōu)化版教學課件
- 兩淮礦區(qū)地面定向多分支水平井鉆進作業(yè)技術規(guī)程
- vc約起來史上最全180個知名投資人聯(lián)系方式
評論
0/150
提交評論