版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
東莞市重點中學2024年八年級下冊數(shù)學期末學業(yè)水平測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.函數(shù)y=5x﹣3的圖象不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知一元二次方程,則它的一次項系數(shù)為()A. B. C. D.3.如圖,在四邊形ABCD中,AC與BD相交于點O,∠BAD=90°,BO=DO,那么添加下列一個條件后,仍不能判定四邊形ABCD是矩形的是()A.∠ABC=90° B.∠BCD=90° C.AB=CD D.AB∥CD4.如圖,在中,對角線、相交于點,且,,則的度數(shù)為()A.35° B.40° C.45° D.55°5.下表是某校合唱團成員的年齡分布.年齡/歲13141516頻數(shù)515x對于不同的x,下列關于年齡的統(tǒng)計量不會發(fā)生改變的是()A.眾數(shù)、中位數(shù) B.平均數(shù)、中位數(shù) C.平均數(shù)、方差 D.中位數(shù)、方差6.二次根式有意義的條件是()A.x>3 B.x>-3 C.x≥3 D.x≥-37.如圖,將△ABC繞點A逆時針旋轉110°,得到△ADE,若點D落在線段BC的延長線上,則∠B大小為()A.30° B.35° C.40° D.45°8.如圖,在平面直角坐標系中,點、的坐標分別是.,點在直線上,將沿射線方向平移后得到.若點的橫坐標為,則點的坐標為()A. B. C. D.9.下列事件中,是必然事件的是()A.3天內(nèi)下雨 B.打開電視機,正在播放廣告C.367人中至少有2人公歷生日相同 D.a(chǎn)拋擲1個均勻的骰子,出現(xiàn)4點向上10.下列式子屬于最簡二次根式的是()A. B. C.(a>0) D.二、填空題(每小題3分,共24分)11.如圖,矩形ABCD中,AB=,AD=1.點E是BC邊上的一個動點,連接AE,過點D作DF⊥AE于點F.當△CDF是等腰三角形時,BE的長為_____.12.如圖,在?ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC于點E,過點C作CF∥AE,交AD于點F,則四邊形AECF的面積為________.13.如圖,在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中點,連接AO、DO.若AO=3,則DO的長為_____.14.如圖,在Rt△ABC中,∠C=90°,AC=6,AB=10,點D、E、F是三邊的中點,則△DEF的周長是______.15.已知一次函數(shù)y=kx+b的圖像如圖所示,當x<2時,y的取值范圍是________.16.如圖,線段AB=10,點P在線段AB上,在AB的同側分別以AP、BP為邊長作正方形APCD和BPEF,點M、N分別是EF、CD的中點,則MN的最小值是_______.17.定義一種運算法則“”如下:,例如:,若,則的取值范圍是____________.18.如圖,在平面直角坐標系中,等邊三角形ABC的頂點B,C的坐標分別為(1,0),(3,0),過坐標原點O的一條直線分別與邊AB,AC交于點M,N,若OM=MN,則點M的坐標為______________.三、解答題(共66分)19.(10分)如圖,在?ABCD中,對角線AC、BD相交于點O,點E、F是AD上的點,且AE=EF=FD.連接BE、BF,使它們分別與AO相交于點G、H.(1)求EG:BG的值;(2)求證:AG=OG;(3)設AG=a,GH=b,HO=c,求a:b:c的值.20.(6分)如圖,正方形ABCD中,點E是BC延長線上一點,連接DE,過點B作BF⊥DE于點F,連接FC.(1)求證:∠FBC=∠CDF;(2)作點C關于直線DE的對稱點G,連接CG,F(xiàn)G,猜想線段DF,BF,CG之間的數(shù)量關系,并證明你的結論.21.(6分)某市為鼓勵市民節(jié)約用水,自來水公司按分段收費標準收費,如圖反映的是每月水費(元)與用水量(噸)之間的函數(shù)關系.(1)當用水量超過10噸時,求關于的函數(shù)解析式(不必寫自變量取值范圍);(2)按上述分段收費標準小聰家三、四月份分別交水費38元和27元,問四月份比三月份節(jié)約用水多少噸?22.(8分)定義:我們把對角線互相垂直的四邊形叫做垂美四邊形.(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,那么四邊形ABCD是垂美四邊形嗎?請說明理由.(2)性質探究:①如圖1,垂美四邊形ABCD兩組對邊AB、CD與BC、AD之間有怎樣的數(shù)量關系?寫出你的猜想,并給出證明.②如圖3,在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;(3)問題解決:如圖4,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE、BG,GE,已知AC=2,AB=1.求GE的長度.23.(8分)先化簡,再求值:(a+)÷,其中a=1.24.(8分)如圖,平行四邊形中,延長至使,連接交于點,點是線段的中點.(1)如圖1,若,,求平行四邊形的面積;(2)如圖2,過點作交于點,于點,連接,若,求證:.25.(10分)春節(jié)前小王花1200元從農(nóng)貿(mào)市場購進批發(fā)價分別為每箱30元與50元的A,B兩種水果進行銷售,并分別以每箱35元與60元的價格出售,設購進A水果x箱,B水果y箱.(1)讓小王將水果全部售出共賺了215元,則小王共購進A、B水果各多少箱?(2)若要求購進A水果的數(shù)量不得少于B水果的數(shù)量,則應該如何分配購進A,B水果的數(shù)量并全部售出才能獲得最大利潤,此時最大利潤是多少?26.(10分)判斷代數(shù)式的值能否等于-1?并說明理由.
參考答案一、選擇題(每小題3分,共30分)1、B【解析】
根據(jù)一次函數(shù)圖像與k,b的關系得出結論.【詳解】解:因為解析式y(tǒng)=5x﹣3中,k=5>0,圖象過一、三象限,b=﹣3<0,圖象過一、三、四象限,故圖象不經(jīng)過第二象限,故選B.【點睛】考查了一次函數(shù)圖像的性質,熟練掌握一次函數(shù)圖像與k,b的關系是解決本題的關鍵,也可以列表格畫出圖像判斷.2、D【解析】
根據(jù)一般地,任何一個關于x的一元二次方程經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a≠0).這種形式叫一元二次方程的一般形式.其中ax2叫做二次項,a叫做二次項系數(shù);bx叫做一次項;c叫做常數(shù)項可得答案.【詳解】解:一元二次方程,則它的一次項系數(shù)為-2,故選:D.【點睛】此題主要考查了一元二次方程的一般形式,關鍵是掌握一元二次方程的一般形式為ax2+bx+c=0(a≠0).3、C【解析】
根據(jù)矩形的判定定理:有一個角是直角的平行四邊形是矩形,對角線相等的平行四邊形是矩形分別進行分析即可.【詳解】A、∵∠BAD=90°,BO=DO,∴OA=OB=OD,∵∠ABC=90°,∴AO=OB=OD=OC,即對角線平分且相等,∴四邊形ABCD為矩形,正確;B、∵∠BAD=90°,BO=DO,∴OA=OB=OD,∵∠BCD=90°,∴AO=OB=OD=OC,即對角線平分且相等,∴四邊形ABCD為矩形,正確;C、∵∠BAD=90°,BO=DO,AB=CD,無法得出△ABO≌△DCO,故無法得出四邊形ABCD是平行四邊形,進而無法得出四邊形ABCD是矩形,錯誤;D、∵AB||CD,∠BAD=90°,∴∠ADC=90°,∵BO=DO,∴OA=OB=OD,∴∠DAO=∠ADO,∴∠BAO=∠ODC,∵∠AOB=∠DOC,∴△AOB≌△DOC,∴AB=CD,∴四邊形ABCD是平行四邊形,∵∠BAD=90°,∴?ABCD是矩形,正確;故選:C.【點睛】此題主要考查了矩形的判定,關鍵是熟練掌握矩形的判定定理.4、A【解析】
由在中,對角線、相交于點,且可推出是矩形,可得∠DAB=90°進而可以計算的度數(shù).【詳解】解:在中∵∴AC=BD∵在中,AC=BD∴是矩形所以∠DAB=90°∵∴故選A【點睛】本題考查的是矩形的判定和性質.掌握是矩形的判定和性質是解題的關鍵.5、A【解析】
由頻數(shù)分布表可知后兩組的頻數(shù)和為10,即可得知總人數(shù),結合前兩組的頻數(shù)知出現(xiàn)次數(shù)最多的數(shù)據(jù)及第15、16個數(shù)據(jù)的平均數(shù),可得答案.【詳解】由題中表格可知,年齡為15歲與年齡為16歲的頻數(shù)和為,則總人數(shù)為,故該組數(shù)據(jù)的眾數(shù)為14歲,中位數(shù)為(歲),所以對于不同的x,關于年齡的統(tǒng)計量不會發(fā)生改變的是眾數(shù)和中位數(shù),故選A.【點睛】本題主要考查頻數(shù)分布表及統(tǒng)計量的選擇,由表中數(shù)據(jù)得出數(shù)據(jù)的總數(shù)是根本,熟練掌握平均數(shù)、中位數(shù)、眾數(shù)及方差的定義和計算方法是解題的關鍵.6、D【解析】
根據(jù)二次根式被開方數(shù)大于等于0即可得出答案.【詳解】根據(jù)被開方數(shù)大于等于0得,有意義的條件是解得:故選:D【點睛】本題主要考查二次根式有意義的條件,掌握二次根式有意義的條件是解題的關鍵.7、B【解析】
由旋轉性質等到△ABD為等腰三角形,利用內(nèi)角和180°即可解題.【詳解】解:由旋轉可知,∠BAD=110°,AB=AD∴∠B=∠ADB,∠B=(180°-110°)2=35°,故選B.【點睛】本題考查了等腰三角形的性質,三角形的內(nèi)角和,屬于簡單題,熟悉旋轉的性質是解題關鍵.8、C【解析】
由點的橫坐標為及點在直線上,可得點(2,4)得出圖形平移規(guī)律進行計算即可.【詳解】解:由點的橫坐標為及點在直線上當x=2時,y=4∴(2,4)∴該圖形平移規(guī)律為沿著x軸向右平移兩個單位,沿著y軸向上平移4個單位∴(6,4)故答案選:C【點睛】本題考查了由函數(shù)圖像推出點坐標,圖形的平移規(guī)律,掌握圖形的平移規(guī)律與點的平移規(guī)律是解決的關鍵.9、C【解析】
根據(jù)隨機事件和必然事件的定義分別進行判斷.【詳解】A.3天內(nèi)會下雨為隨機事件,所以A選項錯誤;B.打開電視機,正在播放廣告,是隨機事件,所以B選項錯誤;C.367人中至少有2人公歷生日相同是必然事件,所以C選項正確;D.a拋擲1個均勻的骰子,出現(xiàn)4點向上,是隨機事件,所以D選項錯誤.故選C.【點睛】此題考查隨機事件,解題關鍵在于掌握其定義.10、B【解析】
利用最簡二次根式定義判斷即可.【詳解】A、=,不符合題意;B、是最簡二次根式,符合題意;C、(a>0)=|a|=a,不符合題意;D、=,不符合題意.故選:B.【點睛】此題考查了最簡二次根式,熟練掌握最簡二次根式定義是解本題的關鍵.最簡二次根式的條件:(1)被開方數(shù)的因數(shù)是整數(shù)或字母,因式是整式;(2)被開方數(shù)中不含有可化為平方數(shù)或平方式的因數(shù)或因式.二、填空題(每小題3分,共24分)11、1、、1﹣【解析】
過點C作CM⊥DF,垂足為點M,判斷△CDF是等腰三角形,要分類討論,①CF=CD;②DF=DC;③FD=FC,根據(jù)相似三角形的性質進行求解.【詳解】①CF=CD時,過點C作CM⊥DF,垂足為點M,則CM∥AE,DM=MF,延長CM交AD于點G,∴AG=GD=1,∴CE=1,∵CG∥AE,AD∥BC,∴四邊形AGCE是平行四邊形,∴CE=AG=1,∴BE=1∴當BE=1時,△CDF是等腰三角形;②DF=DC時,則DC=DF=,∵DF⊥AE,AD=1,∴∠DAE=45°,則BE=,∴當BE=時,△CDF是等腰三角形;③FD=FC時,則點F在CD的垂直平分線上,故F為AE中點.∵AB=,BE=x,∴AE=,AF=,∵△ADF∽△EAB,∴,,x1﹣4x+1=0,解得:x=1±,∴當BE=1﹣時,△CDF是等腰三角形.綜上,當BE=1、、1﹣時,△CDF是等腰三角形.故答案為:1、、1﹣.【點睛】此題難度比較大,主要考查矩形的性質、相似三角形的性質及等腰三角形的判定,考查知識點比較多,綜合性比較強,另外要注意輔助線的作法.12、【解析】【分析】如圖所示,過點A作AM⊥BC,垂足為M,先證明△ABE是等邊三角形,從而求得BE=AB=2,繼而求得AM長,再證明四邊形AECF是平行四邊形,繼而根據(jù)平行四邊形的面積公式進行計算即可求得.【詳解】如圖所示,過點A作AM⊥BC,垂足為M,∵四邊形ABCD是平行四邊形,∴AD//BC,∴∠B=180°-∠BAD=180°-120°=60°,∠DAE=∠AEB,∵AE平分∠BAD,∠BAD=120°,∴∠DAE=60°,∴∠AEB=60°,∴△ABE是等邊三角形,∴BE=AB=2,∴BM=1,AM=,又∵CF//AE,∴四邊形AECF是平行四邊形,∵CE=BC-BE=3-2=1,∴S四邊形AECF=CE?AM=,故答案為:.【點睛】本題考查了平行四邊形的判定與性質、等邊三角形的判定與性質、勾股定理等,正確添加輔助線、熟練應用相關的定理與性質是解題的關鍵.13、3【解析】
根據(jù)直角三角形斜邊的中線等于斜邊的一半求解即可.【詳解】∵在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中點,∴,,∴DO=AO=3.故答案為3.【點睛】本題考查了直角三角形的性質,熟練掌握直角三角形斜邊的中線等于斜邊的一半是解答本題的關鍵.14、1【解析】
先根據(jù)勾股定理求出BC,再根據(jù)三角形中位線定理求出△DEF的三邊長,然后根據(jù)三角形的周長公式計算即可.【詳解】解:在Rt△ABC中,∵∠C=90°,AC=6,AB=10,∴BC==8,∵點D、E、F是三邊的中點,∴DE=AC=3,DF=AB=5,EF=BC=4,∴△DEF的周長=3+4+5=1.故答案為:1.【點睛】本題考查的是勾股定理和三角形中位線定理,掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關鍵.15、y<1【解析】試題解析∵一次函數(shù)y=kx+b(k≠1)與x軸的交點坐標為(2,1),且圖象經(jīng)過第一、三象限,∴y隨x的增大而增大,∴當x<2時,y<1.【點睛】本題考查了一次函數(shù)的性質:一次函數(shù)y=kx+b(k、b為常數(shù),k≠1)的圖象為直線,當k>1,圖象經(jīng)過第一、三象限,y隨x的增大而增大;當k<1,圖象經(jīng)過第二、四象限,y隨x的增大而減??;直線與x軸的交點坐標為(-kx16、2【解析】
設MN=y,PC=x,根據(jù)正方形的性質和勾股定理列出y1關于x的二次函數(shù)關系式,求二次函數(shù)的最值即可.【詳解】作MG⊥DC于G,如圖所示:設MN=y,PC=x,根據(jù)題意得:GN=2,MG=|10-1x|,在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,即y1=21+(10-1x)1.∵0<x<10,∴當10-1x=0,即x=2時,y1最小值=12,∴y最小值=2.即MN的最小值為2;故答案為:2.【點睛】本題考查了正方形的性質、勾股定理、二次函數(shù)的最值.熟練掌握勾股定理和二次函數(shù)的最值是解決問題的關鍵.17、【解析】
根據(jù)新定義列出不等式即可求解.【詳解】依題意得-3x+5≤11解得故答案為:.【點睛】此題主要考查列不等式,解題的關鍵是根據(jù)題意列出不等式進行求解.18、(,)【解析】
∵B(1,0),C(3,0),∴OB=1,OC=3,∴BC=2,過點N作EN∥OC交AB于E,過點A作AD⊥BC于D,NF⊥BC于F,∴∠ENM=∠BOM,∵OM=NM,∠EMN=∠BMO,∴△ENM≌△BOM,∴EN=OB=1,∵△ABC是正三角形,∴AD=,BD=BC=1,∴OD=2,∴A(2,),∴△AEN也是正三角形,∴AN=EN=1,∴AN=CN,∴N,∴M(,)故答案為(,)三、解答題(共66分)19、(1)1:3;(1)見解析;(3)5:3:1.【解析】
(1)根據(jù)平行四邊形的性質可得AO=AC,AD=BC,AD∥BC,從而可得△AEG∽△CBG,由AE=EF=FD可得BC=3AE,然后根據(jù)相似三角形的性質,即可求出EG:BG的值;(1)根據(jù)相似三角形的性質可得GC=3AG,則有AC=4AG,從而可得AO=AC=1AG,即可得到GO=AO﹣AG=AG;(3)根據(jù)相似三角形的性質可得AG=AC,AH=AC,結合AO=AC,即可得到a=AC,b=AC,c=AC,就可得到a:b:c的值.【詳解】(1)∵四邊形ABCD是平行四邊形,∴AO=AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴.∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3;(1)∵GC=3AG(已證),∴AC=4AG,∴AO=AC=1AG,∴GO=AO﹣AG=AG;(3)∵AE=EF=FD,∴BC=AD=3AE,AF=1AE.∵AD∥BC,∴△AFH∽△CBH,∴,∴=,即AH=AC.∵AC=4AG,∴a=AG=AC,b=AH﹣AG=AC﹣AC=AC,c=AO﹣AH=AC﹣AC=AC,∴a:b:c=::=5:3:1.20、(1)見解析,(2)BF=CG+DF.理由見解析.【解析】
(1)由題意可得到∠FBC+∠E=90°,∠CDF+∠E=90°,然后依據(jù)余角的性質求解即可;(2)在線段FB上截取FM,使得FM=FD,然后可證明△BDM∽△CDF,由相似三角形的性質可得到BM=FC,然后證明△CFG為等腰直角三角形,從而可得到CG=CF,然后可得到問題的答案.【詳解】.解:(1)∵ABCD為正方形,∴∠DCE=90°.∴∠CDF+∠E=90°,又∵BF⊥DE,∴∠FBC+∠E=90°,∴∠FBC=∠CDF(2)如圖所示:在線段FB上截取FM,使得FM=FD.∵∠BDC=∠MDF=45°,∴∠BDM=∠CDF,∵,∴△BDM∽△CDF,∴,∠DBM=∠DCF,∴BM=CF,∴∠CFE=∠FCD+∠CDF=∠DBM+∠BDM=∠DMF=45°,∴∠EFG=∠EFC=45°,∴∠CFG=90°,∵CF=FG,∴CG=CF,∴BM=CG,∴BF=BM+FM=CG+DF.【點睛】本題考查四邊形綜合題、正方形的性質、等腰直角三角形的判定和性質、相似三角形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,構造相似三角形解決問題.21、(1);(2)四月份比三月份節(jié)約用水3噸.【解析】
(1)根據(jù)函數(shù)圖象和函數(shù)圖象中的數(shù)據(jù)可以求得當用水量超過10噸時,y關于x的函數(shù)解析式;
(2)根據(jù)題意和函數(shù)圖象可以分別求得三月份和四月份的用水量,從而可以解答本題.【詳解】解:(1)設關于的解析式為,把,;,,代入中得,解得,關于的解析式為.(2)四月份水費27元小于30元,所以4月份用水量為:(噸)三月份水費為38元超過30元把代入中,得,(噸)所以四月份比三月份節(jié)約用水3噸.【點睛】考查一次函數(shù)的應用,解答本題的關鍵是明確題意,找出所求問題需要的條件,求出相應的函數(shù)解析式,利用函數(shù)的思想解答.22、(1)四邊形ABCD是垂美四邊形,證明見解析(2)①,證明見解析;②四邊形FMAN是矩形,證明見解析(3)【解析】
(1)根據(jù)垂直平分線的判定定理證明即可;(2)①根據(jù)垂直的定義和勾股定理解答即可;②根據(jù)在Rt△ABC中,點F為斜邊BC的中點,可得,再根據(jù)△ABD和△ACE是等腰三角形,可得,再由(1)可得,,從而判定四邊形FMAN是矩形;(3)根據(jù)垂美四邊形的性質、勾股定理、結合(2)的結論計算即可.【詳解】(1)四邊形ABCD是垂美四邊形連接AC、BD∵∴點A在線段BD的垂直平分線上∵∴點C在線段BD的垂直平分線上∴直線AC是線段BD的垂直平分線∴∴四邊形ABCD是垂美四邊形;(2)①,理由如下如圖,已知四邊形ABCD中,,垂足為E由勾股定理得②四邊形FMAN是矩形,理由如下如圖,連接AF∵在Rt△ABC中,點F為斜邊BC的中點∵△ABD和△ACE是等腰三角形由(1)可得,∵∴四邊形FMAN是矩形;(3)連接CG、BE,,即在△AGB和△ACE中∵,即∴四邊形CGEB是垂美四邊形由(2)得.【點睛】本題考查了垂美四邊形的問題,掌握垂直平分線的判定定理、垂直的定義、勾股定理、垂美四邊形的性質、全等三角形的性質以及判定定理是解題的關鍵.23、2.【解析】
分析:把a+通分化簡,再把除法轉化為乘法,并把分子、分母分解因式約分,化成最簡分式(或整式)后把a=1代入計算.詳解:(a+)÷=[+]?=?=?=,當a=1時,原式==2.點睛:本題考查了分式的化簡求值,熟練掌握分式混合運算的運算法則是解答本題的關鍵,本題也考查了運用平方差公式和完全平方公式分解因式.24、(1)(2)見解析【解析】
(1)首先證明CE⊥AF,想辦法求出CD,AE即可解決問題.(2)證明:如圖2中,連接BE,作EK⊥AC于K.利用全等三角形的性質證明AG=EK=KG,即可解決問題.【詳解】(1)解:如圖1中,∵CA=CF,AE=EF,∴CE⊥AF,∵CE=1,∠F=30°,∴CF=CA=2CE=2,AE=EF=,∵四邊形ABCD平行四邊形,∴AD∥CF,∴∠D=∠ECF,∵∠AED=∠CEF,AE=EF,∴△ADE≌△FCE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年深冷技術設備合作協(xié)議書
- 北師大版歷史八年級上冊第21課《民族工業(yè)的曲折發(fā)展》聽課評課記錄
- 首師大版道德與法治七年級上冊10.1《多樣的情緒》聽課評課記錄
- 人教版地理七年級下冊《8.3撒哈拉以南非洲》聽課評課記錄
- 湘教版地理八年級上冊2.2《中國的氣候》聽課評課記錄
- 湘教版地理八年級下冊《第三節(jié) 東北地區(qū)的產(chǎn)業(yè)分布》聽課評課記錄2
- 環(huán)境工程投資咨詢合同(2篇)
- 新版華東師大版八年級數(shù)學下冊《16.2.1分式的乘除》聽評課記錄5
- 浙教版數(shù)學七年級下冊《5.5 分式方程》聽評課記錄2
- 湘教版數(shù)學七年級下冊5.2《旋轉》聽評課記錄
- 保潔班長演講稿
- 課題研究實施方案 范例及課題研究方法及技術路線圖模板
- 牙髓炎中牙髓干細胞與神經(jīng)支配的相互作用
- 勞務雇傭協(xié)議書范本
- 【2022屆高考英語讀后續(xù)寫】主題升華積累講義及高級句型積累
- JGJ52-2006 普通混凝土用砂、石質量及檢驗方法標準
- 環(huán)境監(jiān)測的基本知識
- 電動車棚施工方案
- 《中國十大書法家》課件
- 超實用可編輯版中國地圖全圖及分省地圖
- 西方法律思想史ppt
評論
0/150
提交評論