江北新區(qū)聯(lián)盟2024年數(shù)學(xué)八年級(jí)下冊期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
江北新區(qū)聯(lián)盟2024年數(shù)學(xué)八年級(jí)下冊期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
江北新區(qū)聯(lián)盟2024年數(shù)學(xué)八年級(jí)下冊期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
江北新區(qū)聯(lián)盟2024年數(shù)學(xué)八年級(jí)下冊期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
江北新區(qū)聯(lián)盟2024年數(shù)學(xué)八年級(jí)下冊期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江北新區(qū)聯(lián)盟2024年數(shù)學(xué)八年級(jí)下冊期末質(zhì)量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.已知點(diǎn)(-1,y1),(4,y2)在一次函數(shù)y=3x-2的圖象上,則y1,y2,0的大小關(guān)系是()A.0<y1<y2 B.y1<0<y2C.y1<y2<0 D.y2<0<y12.?dāng)?shù)據(jù):2,5,4,5,3,4,4的眾數(shù)與中位數(shù)分別是()A.4,3 B.4,4 C.3,4 D.4,53.點(diǎn)P(x,y)在第一象限,且x+y=8,點(diǎn)A的坐標(biāo)為(6,0),設(shè)△OPA的面積為S.當(dāng)S=12時(shí),則點(diǎn)P的坐標(biāo)為()A.(6,2) B.(4,4) C.(2,6) D.(12,﹣4)4.如果關(guān)于x的分式方程ax+1-3=1-xx+1有負(fù)數(shù)解,且關(guān)于y的不等式組A.﹣2 B.0 C.1 D.35.大腸桿菌的長度平均約為0.0000014米,把這個(gè)數(shù)用科學(xué)記數(shù)表示正確的是()米.A.1.4×106 B.1.4×10﹣5 C.14×10﹣7 D.1.4×10﹣66.若直角三角形中,斜邊的長為13,一條直角邊長為5,則這個(gè)三角形的面積是()A.60 B.30 C.20 D.327.下列各式由左邊到右邊的變形中,屬于分解因式的是()A. B.C. D.8.如圖,在□ABCD中,點(diǎn)E、F分別在邊AB、DC上,下列條件不能使四邊形EBFD是平行四邊形的條件是()A.DE=BF B.AE=CF C.DE∥FB D.∠ADE=∠CBF9.將拋物線y=2(x﹣4)2﹣1先向左平移4個(gè)單位長度,再向上平移2個(gè)單位長度,平移后所得拋物線的解析式為()A.y=2x2+1 B.y=2x2﹣3C.y=2(x﹣8)2+1 D.y=2(x﹣8)2﹣310.若分式有意義,則的取值范圍是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,將一塊邊長為12cm正方形紙片ABCD的頂點(diǎn)A折疊至DC邊上的E點(diǎn),使DE=5,折痕為PQ,則PQ的長為_________cm.12.如圖,為正三角形,是的角平分線,也是正三角形,下列結(jié)論:①:②:③,其中正確的有________(填序號(hào)).13.甲、乙兩個(gè)施工隊(duì)共同完成某居民小區(qū)綠化改造工程,乙隊(duì)先單獨(dú)做2天后,再由兩隊(duì)合作10天就能完成全部工程.已知乙隊(duì)單獨(dú)完成此項(xiàng)工程所需天數(shù)是甲隊(duì)單獨(dú)完成此項(xiàng)工程所需天數(shù)的,則乙施工隊(duì)單獨(dú)完成此項(xiàng)工程需_____天.14.若一次函數(shù)y=kx+b圖象如圖,當(dāng)y>0時(shí),x的取值范圍是___________

.15.菱形ABCD的兩條對角線長分別為6和4,則菱形ABCD的面積是_____.16.一組數(shù)據(jù)3,4,x,6,7的平均數(shù)為5,則這組數(shù)據(jù)的方差______.17.用換元法解方程3x22x+1-2x+1x2=1時(shí),如果設(shè)x22x+1=18.若關(guān)于x的一次函數(shù)y=(m+1)x+2m﹣3的圖象經(jīng)過第一、三、四象限,則m的取值范圍為_____.三、解答題(共66分)19.(10分)如圖,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求證:四邊形BCDE是矩形.20.(6分)為了滿足市場需求,某廠家生產(chǎn)A、B兩種款式的環(huán)保購物袋,每天共生產(chǎn)5000個(gè),兩種購物袋的成本和售價(jià)如下表:成本(元/個(gè))售價(jià)(元/個(gè))22.433.6設(shè)每天生產(chǎn)A種購物袋x個(gè),每天共獲利y元.(1)求y與x的函數(shù)解析式;(2)如果該廠每天最多投入成本12000元,那么每天最多獲利多少元?21.(6分)甲、乙兩車間同時(shí)開始加工一批服裝.從幵始加工到加工完這批服裝甲車間工作了9小時(shí),乙車間在中途停工一段時(shí)間維修設(shè)備,然后按停工前的工作效率繼續(xù)加工,直到與甲車間同時(shí)完成這批服裝的加工任務(wù)為止.設(shè)甲、乙兩車間各自加工服裝的數(shù)量為y(件).甲車間加工的時(shí)間為x(時(shí)),y與x之間的函數(shù)圖象如圖所示.(1)甲車間每小時(shí)加工服裝件數(shù)為件;這批服裝的總件數(shù)為件.(2)求乙車間維修設(shè)備后,乙車間加工服裝數(shù)量y與x之間的函數(shù)關(guān)系式;(3)求甲、乙兩車間共同加工完1000件服裝時(shí)甲車間所用的時(shí)間.22.(8分)如圖,,,垂足為E,,求的度數(shù).23.(8分)求不等式組2(x-1)≥x-4x+724.(8分)如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位長度的正方形,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),ABC的頂點(diǎn)均在格點(diǎn)上.(1)先將ABC向上平移4個(gè)單位后得到的A1B1C1,再將A1B1C1繞點(diǎn)C1按順時(shí)針方向旋轉(zhuǎn)90°后所得到的A2B2C1,在圖中畫出A1B1C1和A2B2C1.(2)A2B2C1能由ABC繞著點(diǎn)O旋轉(zhuǎn)得到,請?jiān)诰W(wǎng)格上標(biāo)出點(diǎn)O.25.(10分)計(jì)算:5÷﹣3+2.26.(10分)小黃人在與同伴們研究日歷時(shí)發(fā)現(xiàn)了一個(gè)有趣的規(guī)律:若用字母n表示平行四邊形中左上角位置的數(shù)字,請你用含n的式子寫出小黃人發(fā)現(xiàn)的規(guī)律,并加以證明.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】解:∵點(diǎn)(﹣1,y1),(4,y1)在一次函數(shù)y=3x﹣1的圖象上,∴y1=﹣5,y1=10,∵10>0>﹣5,∴y1<0<y1.故選B.2、B【解析】

根據(jù)眾數(shù)及中位數(shù)的定義,求解即可.【詳解】解:將數(shù)據(jù)從小到大排列為:2,3,1,1,1,5,5,∴眾數(shù)是1,中位數(shù)是1.故選B.【點(diǎn)睛】本題考查眾數(shù);中位數(shù)的概念.3、B【解析】

根據(jù)題意畫出圖形,根據(jù)三角形的面積公式即可得出S關(guān)于y的函數(shù)關(guān)系式,由函數(shù)關(guān)系式及點(diǎn)P在第一象限即可得出x的值,即可解答【詳解】△OPA的面積為S==12,所以,y=4,由x+y=8,得x=4,所以,P(4,4),選B?!军c(diǎn)睛】此題考查坐標(biāo)與圖形性質(zhì),解題關(guān)鍵在于得出x的值4、B【解析】

解關(guān)于y的不等式組2(a-y)?-y-43y+42<y+1,結(jié)合解集無解,確定a的范圍,再由分式方程ax+1-3=【詳解】由關(guān)于y的不等式組2(a-y)?-y-43y+42<y+1∵該不等式組解集無解,∴2a+4≥﹣2即a≥﹣3又∵ax+1-3=1-xx+1而關(guān)于x的分式方程ax+1∴a﹣4<1∴a<4于是﹣3≤a<4,且a為整數(shù)∴a=﹣3、﹣2、﹣1、1、1、2、3則符合條件的所有整數(shù)a的和為1.故選B.【點(diǎn)睛】本題考查的是解分式方程與解不等式組,求各種特殊解的前提都是先求出整個(gè)解集,再在解集中求特殊解,了解求特殊解的方法是解決本題的關(guān)鍵.5、D【解析】

絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為(為整數(shù)),與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.【詳解】.故選:D.【點(diǎn)睛】本題主要考查了科學(xué)記數(shù)法的表示,熟練掌握相關(guān)表示方法是解決本題的關(guān)鍵.6、B【解析】

解:根據(jù)直角三角形的勾股定理可得:另一條直角邊=,則S=12×5÷2=30故選:B.7、B【解析】

根據(jù)分解因式的定義:把一個(gè)多項(xiàng)式化為幾個(gè)最簡整式的乘積的形式,這種變形叫做把這個(gè)因式分解,逐一判定即可.【詳解】A選項(xiàng),不屬于分解因式,錯(cuò)誤;B選項(xiàng),屬于分解因式,正確;C選項(xiàng),不屬于分解因式,錯(cuò)誤;D選項(xiàng),不能確定是否為0,錯(cuò)誤;故選:B.【點(diǎn)睛】此題主要考查對分解因式的理解,熟練掌握,即可解題.8、A【解析】

根據(jù)平行四邊形的性質(zhì)可得AB∥CD,添加DE=BF后,滿足一組對邊平行,另一組對邊相等,不符合平行四邊形的判定方法,進(jìn)而可判斷A項(xiàng);根據(jù)平行四邊形的性質(zhì)可得AB∥CD,AB=CD,進(jìn)一步即得BE=DF,根據(jù)一組對邊平行且相等的四邊形是平行四邊形即可判斷B項(xiàng);根據(jù)平行四邊形的性質(zhì)可得AB∥CD,進(jìn)而根據(jù)平行四邊形的定義可判斷C項(xiàng);根據(jù)平行四邊形的性質(zhì)可證明△ADE≌△CBF,進(jìn)而可得AE=CF,DE=BF,然后根據(jù)兩組對邊相等的四邊形是平行四邊形即可判斷D項(xiàng).【詳解】解:A、∵四邊形ABCD是平行四邊形,∴AB∥CD,由DE=BF,不能判定四邊形EBFD是平行四邊形,所以本選項(xiàng)符合題意;B、∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵AE=CF,∴BE=DF,∴四邊形EBFD是平行四邊形,所以本選項(xiàng)不符合題意;C、∵四邊形ABCD是平行四邊形,∴AB∥CD,∵DE∥FB,∴四邊形EBFD是平行四邊形,所以本選項(xiàng)不符合題意;D、∵四邊形ABCD是平行四邊形,∴∠A=∠C,AD=CB,AB=CD,∵∠ADE=∠CBF,∴△ADE≌△CBF(ASA),∴AE=CF,DE=BF,∴BE=DF,∴四邊形EBFD是平行四邊形,所以本選項(xiàng)不符合題意.故選:A.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)和判定以及全等三角形的判定和性質(zhì),屬于??碱}型,熟練掌握平行四邊形的判定和性質(zhì)是解本題的關(guān)鍵.9、A【解析】【分析】根據(jù)平移的規(guī)律即可得到平移后函數(shù)解析式.【詳解】拋物線y=2(x-4)2-1先向左平移4個(gè)單位長度,得到的拋物線解析式為y=2(x-4+4)2-1,即y=2x2-1,再向上平移2個(gè)單位長度得到的拋物線解析式為y=2x2-1+2,即y=2x2+1;故選A【點(diǎn)睛】本題考查的是二次函數(shù)圖象與幾何變換,熟練掌握平移的規(guī)律:左加右減,上加下減.并用規(guī)律求函數(shù)解析式是解題的關(guān)鍵.10、A【解析】

根據(jù)分式有意義的條件,得到關(guān)于x的不等式,進(jìn)而即可求解.【詳解】∵分式有意義,∴,即:,故選A.【點(diǎn)睛】本題主要考查分式有意義的條件,掌握分式的分母不等于零,是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、13【解析】

先過點(diǎn)P作PM⊥BC于點(diǎn)M,利用三角形全等的判定得到△PQM≌△ADE,從而求出PQ=AE.【詳解】過點(diǎn)P作PM⊥BC于點(diǎn)M,由折疊得到PQ⊥AE,∴∠DAE+∠APQ=90°,又∠DAE+∠AED=90°,∴∠AED=∠APQ,∵AD∥BC,∴∠APQ=∠PQM,則∠PQM=∠APQ=∠AED,∠D=∠PMQ,PM=AD∴△PQM≌△ADE∴PQ=AE=故答案是:13.【點(diǎn)睛】本題主要考查正方形中的折疊問題,正方形的性質(zhì).解決本題的關(guān)鍵是能利用折疊得出PQ⊥AE從而推理出∠AED=∠APQ=∠PQM,為證明三角形全等提供了關(guān)鍵的條件.12、①②③【解析】

由等邊三角形的性質(zhì)可得AE=AD,∠CAD=∠BAD=30°,AD⊥BC,可得∠BAE=∠BAD=30°,且AE=AD,可得EF=DF,“SAS”可證△ABE≌△ABD,可得BE=BD,即可求解.【詳解】解:∵△ABC和△ADE是等邊三角形,AD為∠BAC的角平分線,

∴AE=AD,∠CAD=∠BAD=30°,AD⊥BC,

∴∠BAE=∠BAD=30°,且AE=AD,

∴EF=DF

∵AE=AD,∠BAE=∠BAD,AB=AB

∴△ABE≌△ABD(SAS),

∴BE=BD

∴正確的有①②③

故答案為:①②③【點(diǎn)睛】本題考查了全等三角形的證明和全等三角形對應(yīng)邊相等的性質(zhì),考查了等邊三角形各邊長、各內(nèi)角為60°的性質(zhì),本題中求證△ABE≌△ABD是解題的關(guān)鍵.13、2.【解析】

求的是工效,工作時(shí)間,一定是根據(jù)工作總量來列等量關(guān)系.等量關(guān)系為:甲20天的工作總量+乙22天的工作總量=2.【詳解】解:設(shè)甲施工隊(duì)單獨(dú)完成此項(xiàng)工程需x天,則乙施工隊(duì)單獨(dú)完成此項(xiàng)工程需x天.根據(jù)題意得:.解這個(gè)方程得:x=3.經(jīng)檢驗(yàn):x=3是所列方程的解.∴當(dāng)x=3時(shí),x=2.故答案為2【點(diǎn)睛】應(yīng)用題中一般有三個(gè)量,求一個(gè)量,明顯的有一個(gè)量,一定是根據(jù)另一量來列等量關(guān)系的.本題考查分式方程的應(yīng)用,分析題意,找到關(guān)鍵描述語,找到合適的等量關(guān)系是解決問題的關(guān)鍵.14、x<-1【解析】

由圖象可知一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)(-1,0)、(0,-2).∴,解得,∴該一次函數(shù)的解析式為y=?2x-2,∵?2<0,∴當(dāng)y>0時(shí),x的取值范圍是:x<-1.故答案為x<-1.15、1【解析】

根據(jù)菱形的面積等于對角線積的一半,即可求得其面積.【詳解】∵菱形ABCD的兩條對角線長分別為6和4,∴其面積為4×6=1.故答案為:1.【點(diǎn)睛】此題考查了菱形的性質(zhì).注意熟記①利用平行四邊形的面積公式.②菱形面積=ab.(a、b是兩條對角線的長度).16、1【解析】

先由平均數(shù)的公式求出x的值,再根據(jù)方差的公式計(jì)算即可.【詳解】解:數(shù)據(jù)3,4,x,6,7的平均數(shù)為5,,解得:,這組數(shù)據(jù)為3,4,5,6,7,這組數(shù)據(jù)的方差為:.故答案為:1.【點(diǎn)睛】本題考查方差的定義:一般地設(shè)n個(gè)數(shù)據(jù),,,的平均數(shù)為,則方差,它反映了一組數(shù)據(jù)的波動(dòng)大小,方差越大,波動(dòng)性越大,反之也成立.17、3y2-y-1=0【解析】

將分式方程中3x22x+1換成3y,【詳解】解:根據(jù)題意,得:3y-1y去分母,得:3y2-1=y,整理,得:3y2-y-1=0.故答案為:3y2-y-1=0.【點(diǎn)睛】本題考查了用換元法解分式方程.18、﹣1<m<【解析】

根據(jù)一次函數(shù)y=kx+b(k≠0)的圖象在坐標(biāo)平面內(nèi)的位置關(guān)系確定k,b的取值范圍,從而求解.【詳解】解:由一次函數(shù)y=(m+1)x+2m﹣3的圖象經(jīng)過第一、三、四象限,知m+1>0,且2m﹣3<0,解得,﹣1<m<.故答案為:﹣1<m<.【點(diǎn)睛】本題考查一次函數(shù)圖象與系數(shù)的關(guān)系,解題的關(guān)鍵是掌握一次函數(shù)圖象與系數(shù)的關(guān)系.三、解答題(共66分)19、見解析【解析】

分析:證明:∵∠BAD=∠CAE,∴∠BAE=∠CAD.在△ABE和△ACD中,∵AB=AC,AE=AD,∠BAE=∠CAD,∴△ABE≌△ACD(SAS).∴BE=CD.又∵DE=BC,∴四邊形BCDE為平行四邊形.如圖,連接BD,CE,在△ACE和△ABD中,∵AC=AB,AE=AD,∠CAE=∠BAD,∴△ACE≌△ABD(SAS),∴CE=BD.∴四邊形BCED為矩形(對角線相等的平行四邊形是矩形).20、(1);(2)2400元.【解析】

(1)根據(jù)題意可得A種塑料袋每天獲利(2.4-2)x,B種塑料袋每天獲利(3.6-3)(5000-x),共獲利y元,列出y與x的函數(shù)關(guān)系式:y=(2.4-2)x+(3.6-3)(5000-x).(2)根據(jù)題意得2x+3(4500-x)≤10000,解出x的范圍.得出y隨x增大而減小.【詳解】(1)由題意得:=(2)由題意得:≤12000解得:≥3000在函數(shù)中,<0∴隨的增大而減小∴當(dāng)=3000時(shí),每天可獲利最多,最大利潤=2400∴該廠每天最多獲利2400元.【點(diǎn)睛】此題主要考查了一次函數(shù)的應(yīng)用以及不等式組解法,解決問題的關(guān)鍵是讀懂題意,找到關(guān)鍵描述語,找到所求的量的等量關(guān)系.21、(1)10;2;(2)y=60x﹣120(4≤x≤9);(3)1.【解析】試題分析:(1)根據(jù)工作效率=工作總量÷工作時(shí)間,即可求出甲車間每小時(shí)加工服裝件數(shù),再根據(jù)這批服裝的總件數(shù)=甲車間加工的件數(shù)+乙車間加工的件數(shù),即可求出這批服裝的總件數(shù);(2)根據(jù)工作效率=工作總量÷工作時(shí)間,即可求出乙車間每小時(shí)加工服裝件數(shù),根據(jù)工作時(shí)間=工作總量÷工作效率結(jié)合工作結(jié)束時(shí)間,即可求出乙車間修好設(shè)備時(shí)間,再根據(jù)加工的服裝總件數(shù)=120+工作效率×工作時(shí)間,即可求出乙車間維修設(shè)備后,乙車間加工服裝數(shù)量y與x之間的函數(shù)關(guān)系式;(3)根據(jù)加工的服裝總件數(shù)=工作效率×工作時(shí)間,求出甲車間加工服裝數(shù)量y與x之間的函數(shù)關(guān)系式,將甲、乙兩關(guān)系式相加令其等于1000,求出x值,此題得解.試題解析:解:(1)甲車間每小時(shí)加工服裝件數(shù)為720÷9=10(件),這批服裝的總件數(shù)為720+420=2(件).故答案為10;2.(2)乙車間每小時(shí)加工服裝件數(shù)為120÷2=60(件),乙車間修好設(shè)備的時(shí)間為9﹣(420﹣120)÷60=4(時(shí)),∴乙車間維修設(shè)備后,乙車間加工服裝數(shù)量y與x之間的函數(shù)關(guān)系式為y=120+60(x﹣4)=60x﹣120(4≤x≤9).(3)甲車間加工服裝數(shù)量y與x之間的函數(shù)關(guān)系式為y=10x,當(dāng)10x+60x﹣120=1000時(shí),x=1.答:甲、乙兩車間共同加工完1000件服裝時(shí)甲車間所用的時(shí)間為1小時(shí).點(diǎn)睛:本題考查了一次函數(shù)的應(yīng)用以及解一元一次方程,解題的關(guān)鍵是:(1)根據(jù)數(shù)量關(guān)系,列式計(jì)算;(2)根據(jù)數(shù)量關(guān)系,找出乙車間維修設(shè)備后,乙車間加工服裝數(shù)量y與x之間的函數(shù)關(guān)系式;(3)根據(jù)數(shù)量關(guān)系,找出甲車間加工服裝數(shù)量y與x之間的函數(shù)關(guān)系式.22、【解析】

直接利用平行線的性質(zhì)得出∠A+∠C=180°,進(jìn)而得出∠C的度數(shù),再利用垂直的定義得出∠C+∠D=90°,即可得出答案.【詳解】,已知兩

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論