北京市教育院附中2024年八年級下冊數(shù)學期末質(zhì)量檢測試題含解析_第1頁
北京市教育院附中2024年八年級下冊數(shù)學期末質(zhì)量檢測試題含解析_第2頁
北京市教育院附中2024年八年級下冊數(shù)學期末質(zhì)量檢測試題含解析_第3頁
北京市教育院附中2024年八年級下冊數(shù)學期末質(zhì)量檢測試題含解析_第4頁
北京市教育院附中2024年八年級下冊數(shù)學期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

北京市教育院附中2024年八年級下冊數(shù)學期末質(zhì)量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.在平行四邊形ABCD中,對角線AC,BD相交于點O.下列條件不能判定平行四邊形ABCD為矩形的是()A.∠ABC=90° B.AC=BDC.AC⊥BD D.∠BAD=∠ADC2.如圖,E、F分別是正方形ABCD的邊CD、AD上的點,且CE=DF,AE、BF相交于點O,下列結(jié)論:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)中正確的有A.4個 B.3個 C.2個 D.1個3.方程x2+x﹣1=0的一個根是()A.1﹣5 B.1-52 C.﹣1+54.如圖,將一個邊長分別為4、8的長方形紙片ABCD折疊,使C點和A點重合,則EB的長是()A.3 B.4 C.5 D.55.下列函數(shù)中是一次函數(shù)的是A. B.C. D.6.調(diào)查50名學生的年齡,列頻數(shù)分布表時,這些學生的年齡落在5個小組中,第一、二、三、五組數(shù)據(jù)個數(shù)分別是2,8,15,5,則第四組的頻數(shù)是()A.20 B.30 C.0.4 D.0.67.如圖,在四邊形中,動點從點開始沿的路徑勻速前進到為止,在這個過程中,的面積隨時間的變化關(guān)系用圖象表示正確的是()A. B. C. D.8.如圖,在四邊形ABCD中,AD=BC,點E、F、G、H分別是AB、BD、CD、AC的中點,則對四邊形EFGH表述最確切的是()A.四邊形EFGH是矩形 B.四邊形EFGH是菱形C.四邊形EFGH是正方形 D.四邊形EFGH是平行四邊形9.下列命題中,錯誤的是()A.平行四邊形的對角線互相平分B.菱形的對角線互相垂直平分C.矩形的對角線相等且互相垂直平分D.角平分線上的點到角兩邊的距離相等10.設(shè)直角三角形的兩條直角邊長及斜邊上的高分別為a,b及h,則下列關(guān)系正確的是()A. B.C. D.11.在一組數(shù)據(jù)3,4,4,6,8中,下列說法錯誤的是()A.它的眾數(shù)是4 B.它的平均數(shù)是5C.它的中位數(shù)是5 D.它的眾數(shù)等于中位數(shù)12.已知第一象限內(nèi)點到兩坐標軸的距離相等,則的值為()A.3 B.4 C.-5 D.3或-5二、填空題(每題4分,共24分)13.若的整數(shù)部分為,小數(shù)部分為,則的值是___.14.當a=______時,最簡二次根式與是同類二次根式.15.在“童心向黨,陽光下成長”的合唱比賽中,30個參賽隊的成績被分為5組,第1~4組的頻數(shù)分別為2,10,7,8,則第5組的頻率為________.16.如圖,在中,,,,把繞邊上的點順時針旋轉(zhuǎn)90°得到,交于點,若,則的長是________.17.已知,則比較大小2_____3(填“<“或“>”)18.正方形ABCD中,F(xiàn)是AB上一點,H是BC延長線上一點,連接FH,將△FBH沿FH翻折,使點B的對應(yīng)點E落在AD上,EH與CD交于點G,連接BG交FH于點M,當GB平分∠CGE時,BM=2,AE=8,則ED=_____.三、解答題(共78分)19.(8分)天水市某中學為了解學校藝術(shù)社團活動的開展情況,在全校范圍內(nèi)隨機抽取了部分學生,在“舞蹈、樂器、聲樂、戲曲、其它活動”項目中,圍繞你最喜歡哪一項活動(每人只限一項)進行了問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖解答下列問題:(1)在這次調(diào)查中,一共抽查了名學生.(2)請你補全條形統(tǒng)計圖.(3)扇形統(tǒng)計圖中喜歡“樂器”部分扇形的圓心角為度.(4)請根據(jù)樣本數(shù)據(jù),估計該校1200名學生中喜歡“舞蹈”項目的共多少名學生?20.(8分)如圖,在菱形中,.請根據(jù)下列條件,僅用無刻度的直尺過頂點作菱形的邊上的高。(1)在圖1中,點為中點;(2)在圖2中,點為中點.21.(8分)為了推動陽光體育運動的廣泛開展,引導(dǎo)學生走向操場,走進大自然,走到陽光,積極參加體育鍛煉,學校準備購買一批運動鞋供學生借用,現(xiàn)從各年的隨機抽取了部分學生的鞋號,繪制了統(tǒng)計圖A和圖B,請根據(jù)相關(guān)信息,解答下列問題:(1)本次隨機抽樣的學生數(shù)是多少?A中值是多少?(2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)和中位數(shù)各是多少?(3)根據(jù)樣本數(shù)據(jù),若學校計劃購買200雙運動鞋,建議購買35號運動鞋多少雙?22.(10分)某校開展“愛我汕頭,創(chuàng)文同行”的活動,倡議學生利用雙休日參加義務(wù)勞動,為了解同學們勞動情況,學校隨機調(diào)查了部分同學的勞動時間,并用得到的數(shù)據(jù)繪制了不完整的統(tǒng)計圖,根據(jù)圖中信息解答下列問題:(1)抽查的學生勞動時間為1.5小時”的人數(shù)為人,并將條形統(tǒng)計圖補充完整.(2)抽查的學生勞動時間的眾數(shù)為小時,中位數(shù)為小時.(3)已知全校學生人數(shù)為1200人,請你估算該校學生參加義務(wù)勞動1小時的有多少人?23.(10分)如圖①,某乘客乘高速列車從甲地經(jīng)過乙地到丙地,列車勻速行駛,圖②為列車離乙地路程y(千米)與行駛時間x(小時)的函數(shù)關(guān)系圖象.(1)填空:甲、丙兩地距離_______千米;(2)求高速列車離乙地的路程y與行駛時間x之間的函數(shù)關(guān)系式,并寫出x的取值范圍.24.(10分)如圖,平面直角坐標系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,的三個頂點的坐標分別為.(1)畫出關(guān)于軸的對稱圖形,并寫出其頂點坐標;(2)畫出將先向下平移4個單位,再向右平移3單位得到的,并寫出其頂點坐標.25.(12分)探索與發(fā)現(xiàn)(1)正方形ABCD中有菱形PEFG,當它們的對角線重合,且點P與點B重合時(如圖1),通過觀察或測量,猜想線段AE與CG的數(shù)量關(guān)系,并證明你的猜想;(2)當(1)中的菱形PEFG沿著正方形ABCD的對角線平移到如圖2的位置時,猜想線段AE與CG的數(shù)量關(guān)系,只寫出猜想不需證明.26.如圖,在△ABC中,AD為BC邊上的中線,點E是AD的中點,過點A作AF∥BC交BE的延長線于點F,連接CF.(1)四邊形AFCD是什么特殊的四邊形?請說明理由.(2)填空:①若AB=AC,則四邊形AFCD是_______形.②當△ABC滿足條件______時,四邊形AFCD是正方形.

參考答案一、選擇題(每題4分,共48分)1、C【解析】

根據(jù)平行四邊形的性質(zhì)、矩形的判定定理對各項進行判斷分析即可.【詳解】A.有一個角為直角的平行四邊形是矩形,正確;B.對角線相等的平行四邊形是矩形,正確;C.并不能判定平行四邊形ABCD為矩形,錯誤;D.∵四邊形ABCD是平行四邊形,∠BAD=∠ADC∴∠BAD=∠ADC=90°,根據(jù)有一個角為直角的平行四邊形是矩形,正確;故答案為:C.【點睛】本題考查了矩形的判定問題,掌握平行四邊形的性質(zhì)、矩形的判定定理是解題的關(guān)鍵.2、B【解析】

根據(jù)正方形的性質(zhì)得AB=AD=DC,∠BAD=∠D=90°,則由CE=DF易得AF=DE,根據(jù)“SAS”可判斷△ABF≌△DAE,所以AE=BF;根據(jù)全等的性質(zhì)得∠ABF=∠EAD,

利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,則AE⊥BF;連結(jié)BE,BE>BC,BA≠BE,而BO⊥AE,根據(jù)垂直平分線的性質(zhì)得到OA≠OE;最后根據(jù)△ABF≌△DAE得S△ABF=S△DAE,則S△ABF-S△AOF=S△DAE-S△AOF,即S△AOB=S四邊形DEOF.【詳解】解:∵四邊形ABCD為正方形,

∴AB=AD=DC,∠BAD=∠D=90°,

而CE=DF,

∴AF=DE,

在△ABF和△DAE中

∴△ABF≌△DAE,

∴AE=BF,所以(1)正確;

∴∠ABF=∠EAD,

而∠EAD+∠EAB=90°,

∴∠ABF+∠EAB=90°,

∴∠AOB=90°,

∴AE⊥BF,所以(2)正確;

連結(jié)BE,

∵BE>BC,

∴BA≠BE,

而BO⊥AE,

∴OA≠OE,所以(3)錯誤;

∵△ABF≌△DAE,

∴S△ABF=S△DAE,

∴S△ABF-S△AOF=S△DAE-S△AOF,

∴S△AOB=S四邊形DEOF,所以(4)正確.

故選B.【點睛】本題考查了全等三角形的判定與性質(zhì):判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的對應(yīng)邊相等.也考查了正方形的性質(zhì).3、D【解析】

利用求根公式解方程,然后對各選項進行判斷.【詳解】∵a=1,b=﹣1,c=﹣1,∴△=b2﹣4ac=12﹣4×(﹣1)=5,則x=-1±5所以x1=-1+52,x2故選:D.【點睛】本題考查了解一元二次方程﹣公式法,解題關(guān)鍵在于掌握運算法則.4、A【解析】設(shè)BE=x,則AE=EC=8-x,在RT△ABE中運用勾股定理可解出x的值,繼而可得出EB的長度.解:設(shè)BE=x,則AE=EC=8-x,在RT△ABE中,AB2+BE2=AE2,即42+x2=(8-x)2,解得:x=1.即EB的長為1.故選A.本題考查了翻折變換的知識,解答本題需要在RT△ABE中利用勾股定理,關(guān)鍵是根據(jù)翻折的性質(zhì)得到AE=EC這個條件.5、D【解析】

根據(jù)形如k、b是常數(shù)的函數(shù)是一次函數(shù)即可解答.【詳解】選項A是反比例函數(shù);選項B是二次函數(shù);選項C是二次函數(shù);選項D是一次函數(shù).故選D.【點睛】本題主要考查了一次函數(shù)定義,關(guān)鍵是掌握一次函數(shù)解析式y(tǒng)=kx+b的結(jié)構(gòu)特征:k≠0;自變量的次數(shù)為1;常數(shù)項b可以為任意實數(shù).6、A【解析】

根據(jù)頻數(shù)的定義:頻數(shù)表是數(shù)理統(tǒng)計中由于所觀測的數(shù)據(jù)較多,為簡化計算,將這些數(shù)據(jù)按等間隔分組,然后按選舉唱票法數(shù)出落在每個組內(nèi)觀測值的個數(shù),稱為(組)頻數(shù)。一共5個頻數(shù),已知總頻數(shù)為50,四個頻數(shù)已知,即可求出其余的一個頻數(shù).【詳解】一共5個頻數(shù),已知總頻數(shù)為50,第一、二、三、五組數(shù)據(jù)個數(shù)分別是2,8,15,5,則第四組的頻數(shù)是50-2-8-15-5=20,故答案為A.【點睛】此題主要考查對頻數(shù)定義的理解,熟練掌握即可得解.7、C【解析】

根據(jù)點的運動過程可知:的底邊為,而且始終不變,點到直線的距離為的高,根據(jù)高的變化即可判斷與的函數(shù)圖象.【詳解】解:設(shè)點到直線的距離為,的面積為:,當在線段運動時,此時不斷增大,也不端增大當在線段上運動時,此時不變,也不變,當在線段上運動時,此時不斷減小,不斷減少,又因為勻速行駛且,所以在線段上運動的時間大于在線段上運動的時間故選.【點睛】本題考查函數(shù)圖象,解題的關(guān)鍵是根據(jù)點到直線的距離來判斷與的關(guān)系,本題屬于基礎(chǔ)題型.8、B【解析】

根據(jù)三角形中位線定理得到EH=BC,EH∥BC,得到四邊形EFGH是平行四邊形,根據(jù)菱形的判定定理解答即可.【詳解】解:∵點E、H分別是AB、AC的中點,∴EH=BC,EH∥BC,同理,EF=AD,EF∥AD,HG=AD,HG∥AD,∴EF=HG,EF∥HD,∴四邊形EFGH是平行四邊形,∵AD=BC,∴EF=EH,∴平行四邊形EFGH是菱形,故選B.【點睛】本題考查的是中點四邊形的概念和性質(zhì)、掌握三角形中位線定理、菱形的判定定理是解題的關(guān)鍵.9、C【解析】試題分析:根據(jù)平行四邊形的性質(zhì)對A進行判斷;根據(jù)菱形的性質(zhì)對B進行判斷;根據(jù)矩形的性質(zhì)對C進行判斷;根據(jù)角平分線的性質(zhì)對D進行判斷.解:A、平行四邊形的對角線互相平分,所以A選項的說法正確;B、菱形的對角線互相垂直平分,所以B選項的說法正確;C、矩形的對角線相等且互相平分,所以C選項的說法錯誤;D、角平分線上的點到角兩邊的距離相等,所以D選項的說法正確.故選C.10、A【解析】

設(shè)斜邊為c,根據(jù)勾股定理即可得出,再由三角形的面積公式即可得出結(jié)論.【詳解】解:設(shè)斜邊為c,根據(jù)勾股定理即可得出,,,即a2b2=a2h2+b2h2,,即,故選:A.【點睛】本題考查的是勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關(guān)鍵.11、C【解析】

一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)為眾數(shù);將這組數(shù)據(jù)從小到大的順序排列,處于中間位置的一個數(shù)或兩個數(shù)的平均數(shù)是中位數(shù).根據(jù)平均數(shù)的定義求解.【詳解】在這一組數(shù)據(jù)中4是出現(xiàn)次數(shù)最多的,故眾數(shù)是4;將這組數(shù)據(jù)已經(jīng)從小到大的順序排列,處于中間位置的那個數(shù)是4,那么由中位數(shù)的定義可知,這組數(shù)據(jù)的中位數(shù)是4;由平均數(shù)的公式的,=(3+4+4+6+8)÷5=5,平均數(shù)為5,故選C.【點睛】本題為統(tǒng)計題,考查平均數(shù)、眾數(shù)與中位數(shù)的意義.將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(或最中間兩個數(shù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù);如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會出錯.12、A【解析】

根據(jù)平面直角坐標系內(nèi)點的坐標的意義即可解答.【詳解】解:第一象限內(nèi)點到兩坐標軸的距離相等,,解得.故選:.【點睛】本題主要考查了平面直角坐標系內(nèi)各象限內(nèi)點的坐標的符號及點的坐標的幾何意義,注意橫坐標的絕對值就是到軸的距離,縱坐標的絕對值就是到軸的距離.二、填空題(每題4分,共24分)13、3【解析】

先估算,再估算,根據(jù)6-的整數(shù)部分為x,小數(shù)部分為y,可得:x=2,y=,然后再代入計算即可求解.【詳解】因為,所以,因為6-的整數(shù)部分為x,小數(shù)部分為y,所以x=2,y=,所以(2x+)y=,故答案為:3.【點睛】本題主要考查無理數(shù)整數(shù)部分和小數(shù)部分,解決本題的關(guān)鍵是要熟練掌握無理數(shù)估算方法和無理數(shù)整數(shù)和小數(shù)部分的求解方法.14、1.【解析】

同類二次根式是指化成最簡二次根式后,被開方數(shù)相同的二次根式叫做同類二次根式.【詳解】解:∵最簡二次根式與是同類二次根式,∴a﹣2=10﹣2a,解得:a=1故答案為:1.【點睛】本題考查同類二次根式.15、0.1.【解析】

直接利用頻數(shù)÷總數(shù)=頻率,進而得出答案.【詳解】解:∵30個參賽隊的成績被分為5組,第1~4組的頻數(shù)分別為2,10,7,8,∴第5組的頻率為:(30-2-10-7-8))÷30=0.1.故答案為:0.1.【點睛】本題考查頻數(shù)與頻率,正確掌握頻率求法是解題關(guān)鍵.16、2【解析】

在Rt△ACB中,,由題意設(shè)BD=B′D=AE=x,由△EDB′∽△ACB,可得,推出,可得,求出x即可解決問題?!驹斀狻拷猓涸谥校?,由題意設(shè),∵,∴,∴,∴,∴,∴,故答案為2.【點睛】本題考查旋轉(zhuǎn)變換、直角三角形的性質(zhì)、相似三角形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學會理由參數(shù)構(gòu)建方程解決問題,所以中考??碱}型.17、<【解析】

要使兩個分式的和為零,則必須兩個分式都為0,進而計算a,b的值,代入比較大小即可.【詳解】解:∵+=0,∴a﹣3=0,2﹣b=0,解得a=3,b=2,∴2,,∴.故答案為:<【點睛】本題主要考查根式為零時參數(shù)的計算,這是考試的重點知識,應(yīng)當熟練掌握.18、1【解析】解:如圖,過B作BP⊥EH于P,連接BE,交FH于N,則∠BPG=90°.∵四邊形ABCD是正方形,∴∠BCD=∠ABC=∠BAD=90°,AB=BC,∴∠BCD=∠BPG=90°.∵GB平分∠CGE,∴∠EGB=∠CGB.又∵BG=BG,∴△BPG≌△BCG,∴∠PBG=∠CBG,BP=BC,∴AB=BP.∵∠BAE=∠BPE=90°,BE=BE,∴Rt△ABE≌Rt△PBE(HL),∴∠ABE=∠PBE,∴∠EBG=∠EBP+∠GBP=∠ABC=15°,由折疊得:BF=EF,BH=EH,∴FH垂直平分BE,∴△BNM是等腰直角三角形.∵BM=2,∴BN=NM=2,∴BE=1.∵AE=8,∴Rt△ABE中,AB==12,∴AD=12,∴DE=12﹣8=1.故答案為1.點睛:本題考查了翻折變換、正方形的性質(zhì)、全等三角形的判定和性質(zhì)、角平分線的定義、勾股定理、線段垂直平分線的性質(zhì)等知識,解題的關(guān)鍵是學會添加輔助線,構(gòu)造全等三角形解決問題.三、解答題(共78分)19、(1)50人;(2)見解析;(3)115.2;(4)1.【解析】

(1)用喜歡聲樂的人數(shù)除以它所占的百分比得到調(diào)查的總?cè)藬?shù);(2)先計算出喜歡戲曲的人數(shù),然后補全條形統(tǒng)計圖;(3)用360度乘以喜歡樂器的人數(shù)所占得到百分比得到扇形統(tǒng)計圖中喜歡“樂器”部分扇形的圓心角的度數(shù);(4)用1200乘以樣本中喜歡舞蹈的人數(shù)所占的百分比即可.【詳解】(1),所以在這次調(diào)查中,一共抽查了50名學生;(2)喜歡戲曲的人數(shù)為(人),條形統(tǒng)計圖為:(3)扇形統(tǒng)計圖中喜歡“樂器”部分扇形的圓心角的度數(shù)為;故答案為50;115.2;(4),所以估計該校1200名學生中喜歡“舞蹈”項目的共1名學生.【點睛】本題考查了條形統(tǒng)計圖:條形統(tǒng)計圖是用線段長度表示數(shù)據(jù),根據(jù)數(shù)量的多少畫成長短不同的矩形直條,然后按順序把這些直條排列起來.從條形圖可以很容易看出數(shù)據(jù)的大小,便于比較.也考查了扇形統(tǒng)計圖.20、(1)見解析;(2)見解析.【解析】

(1)在菱形中,,可知△ACD是等邊三角形,過頂點作菱形的邊上的高,即找到AD的邊中點即可.根據(jù)菱形是中心對稱圖形,連接AC、BD得到對稱中心O,再作直線交于,連接,即可.(2)在菱形中,,可知△ACD是等邊三角形,過頂點作菱形的邊上的高,即找到AD的邊中點即可.根據(jù)菱形是軸對稱圖形,連接,交于點,作直線交于,線段即為所求.【詳解】解:(1)如圖1中,連接,交于點,作直線交于,連接,線段即為所求.(2)如圖2中,連接,交于點,作直線交于,線段即為所求.【點睛】本題考查菱形的性質(zhì),三角形的高的判定等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.21、(1)40;15(2)眾數(shù)為35,中位數(shù)為36;(3)60雙【解析】

(1)根據(jù)條形統(tǒng)計圖求出總?cè)藬?shù)即可;由扇形統(tǒng)計圖以及單位1,求出m的值即可;(2)找出出現(xiàn)次數(shù)最多的即為眾數(shù),將數(shù)據(jù)按照從小到大順序排列,求出中位數(shù)即可;(3)根據(jù)題意列出算式,計算即可得到結(jié)果.【詳解】(1)本次接受隨機抽樣調(diào)查的學生人數(shù)為6+12+10+8+4=40,圖A中m的值為100?30?25?20?10=15;故本次隨機抽樣的學生數(shù)是40名,A中值是15;(2)∵在這組樣本數(shù)據(jù)中,35出現(xiàn)了12次,出現(xiàn)次數(shù)最多,∴這組樣本數(shù)據(jù)的眾數(shù)為35;∵將這組樣本數(shù)據(jù)從小到大得順序排列,其中處于中間的兩個數(shù)都為36,∴中位數(shù)為=36;答:本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)為35,中位數(shù)為36;(3)∵在40名學生中,鞋號為35的學生人數(shù)比例為30%,∴由樣本數(shù)據(jù),估計學校各年級中學生鞋號為35的人數(shù)比例約為30%,則計劃購買200雙運動鞋,有200×30%=60雙為35號.答:建議購買35號運動鞋60雙.【點睛】此題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,以及用樣本估計總體,弄清題意是解本題的關(guān)鍵.22、(1)40,補圖見解析;(2)1.5、1.5;(3)估算該校學生參加義務(wù)勞動1小時的有400人.【解析】

(1)根據(jù)統(tǒng)計圖,先求出總數(shù),再算出勞動時間為1.5小時的人數(shù);(2)根據(jù)中位數(shù)和眾數(shù)的定義分析即可;(3)用樣本估計總體.【詳解】(1)40(2)1.5,1.5(3)1200×30%=400,答:估算該校學生參加義務(wù)勞動1小時的有400人?!军c睛】本題考核知識點:數(shù)據(jù)的描述.解題關(guān)鍵點:理解統(tǒng)計的基本定義,從統(tǒng)計圖獲取信息.23、(1)1353;(2)y=.【解析】

(1)根據(jù)函數(shù)圖形可得,甲、丙兩地距離為:2+153=1353(千米);(2)分兩種情況:當3≤x≤1時,設(shè)高速列車離乙地的路程y與行駛時間x之間的函數(shù)關(guān)系式為:y=kx+b,把(3,2),(1,3)代入得到方程組,即可解答;根據(jù)確定高速列出的速度為133(千米/小時),從而確定點A的坐標為(1.5,153),當1<x≤1.5時,設(shè)高速列車離乙地的路程y與行駛時間x之間的函數(shù)關(guān)系式為:y=k1x+b1,把(1,3),(1.5,153)代入得到方程組,即可解答.【詳解】解:(1)根據(jù)函數(shù)圖形可得,甲、丙兩地距離為:2+153=1353(千米),故答案為2.(2)當3≤x≤1時,設(shè)高速列車離乙地的路程y與行駛時間x之間的函數(shù)關(guān)系式為:y=kx+b,把(3,2),(1,3)代入得:,解得:,∴y=﹣133x+2,高速列出的速度為:2÷1=133(千米/小時),153÷133=3.5(小時),1+3.5=1.5(小時)如圖2,點A的坐標為(1.5,153)當1<x≤1.5時,設(shè)高速列車離乙地的路程y與行駛時間x之間的函數(shù)關(guān)系式為:y=k1x+b1,把(1,3),(1.5,153)代入得:,解得:,∴y=133x﹣2,∴.考點:一次函數(shù)的應(yīng)用.24、(1)圖詳見解析,;(2)圖詳見解析,【解析】

(1)分別作出,,的對應(yīng)點,,即可.(2)分別作出,,的對應(yīng)點,,即可.【詳解】解:(1)△如圖所示.,,;(2)△如圖所示.,,.【點睛】本題考查軸對稱變換,平移變換等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.25、(1)結(jié)論:AE=CG.理由見解析;(2)結(jié)論不變,AE=CG.【解析】分析:(1)結(jié)論AE=CG.只要證明△ABE≌△CBG,即可解決問題.(2)結(jié)論不變,AE=CG.如圖2中,連接BG、BE.先證明△BPE≌△BPG,再證明△ABE≌△CBG即可.詳解:(1)結(jié)論:A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論