版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆黑龍江省哈三中高三第二次診斷性檢測數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若不等式對恒成立,則實數(shù)的取值范圍是()A. B. C. D.2.當時,函數(shù)的圖象大致是()A. B.C. D.3.是平面上的一定點,是平面上不共線的三點,動點滿足,,則動點的軌跡一定經(jīng)過的()A.重心 B.垂心 C.外心 D.內(nèi)心4.已知,則下列不等式正確的是()A. B.C. D.5.已知拋物線y2=4x的焦點為F,拋物線上任意一點P,且PQ⊥y軸交y軸于點Q,則的最小值為()A. B. C.l D.16.閱讀下側(cè)程序框圖,為使輸出的數(shù)據(jù)為31,則①處應填的數(shù)字為A.4 B.5 C.6 D.77.函數(shù)在區(qū)間上的大致圖象如圖所示,則可能是()A.B.C.D.8.用電腦每次可以從區(qū)間內(nèi)自動生成一個實數(shù),且每次生成每個實數(shù)都是等可能性的.若用該電腦連續(xù)生成3個實數(shù),則這3個實數(shù)都小于的概率為()A. B. C. D.9.設函數(shù)(,)是上的奇函數(shù),若的圖象關于直線對稱,且在區(qū)間上是單調(diào)函數(shù),則()A. B. C. D.10.已知雙曲線的左、右頂點分別是,雙曲線的右焦點為,點在過且垂直于軸的直線上,當?shù)耐饨訄A面積達到最小時,點恰好在雙曲線上,則該雙曲線的方程為()A. B.C. D.11.集合,,則()A. B. C. D.12.己知函數(shù)的圖象與直線恰有四個公共點,其中,則()A. B.0 C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.直線xsinα+y+2=0的傾斜角的取值范圍是________________.14.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是______cm2,體積是_____15.雙曲線的焦距為__________,漸近線方程為________.16.已知x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,則三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)若函數(shù)在處有極值,且,則稱為函數(shù)的“F點”.(1)設函數(shù)().①當時,求函數(shù)的極值;②若函數(shù)存在“F點”,求k的值;(2)已知函數(shù)(a,b,,)存在兩個不相等的“F點”,,且,求a的取值范圍.18.(12分)已知數(shù)列滿足,,其前n項和為.(1)通過計算,,,猜想并證明數(shù)列的通項公式;(2)設數(shù)列滿足,,,若數(shù)列是單調(diào)遞減數(shù)列,求常數(shù)t的取值范圍.19.(12分)將棱長為的正方體截去三棱錐后得到如圖所示幾何體,為的中點.(1)求證:平面;(2)求二面角的正弦值.20.(12分)已知,(其中).(1)求;(2)求證:當時,.21.(12分)設函數(shù).(1)求的值;(2)若,求函數(shù)的單調(diào)遞減區(qū)間.22.(10分)已知函數(shù)的圖象在處的切線方程是.(1)求的值;(2)若函數(shù),討論的單調(diào)性與極值;(3)證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
轉(zhuǎn)化為,構造函數(shù),利用導數(shù)研究單調(diào)性,求函數(shù)最值,即得解.【詳解】由,可知.設,則,所以函數(shù)在上單調(diào)遞增,所以.所以.故的取值范圍是.故選:B【點睛】本題考查了導數(shù)在恒成立問題中的應用,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.2、B【解析】由,解得,即或,函數(shù)有兩個零點,,不正確,設,則,由,解得或,由,解得:,即是函數(shù)的一個極大值點,不成立,排除,故選B.【方法點晴】本題通過對多個圖象的選擇考察函數(shù)的解析式、定義域、值域、單調(diào)性,導數(shù)的應用以及數(shù)學化歸思想,屬于難題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點以及時函數(shù)圖象的變化趨勢,利用排除法,將不合題意選項一一排除.3、B【解析】
解出,計算并化簡可得出結(jié)論.【詳解】λ(),∴,∴,即點P在BC邊的高上,即點P的軌跡經(jīng)過△ABC的垂心.故選B.【點睛】本題考查了平面向量的數(shù)量積運算在幾何中的應用,根據(jù)條件中的角計算是關鍵.4、D【解析】
利用特殊值代入法,作差法,排除不符合條件的選項,得到符合條件的選項.【詳解】已知,賦值法討論的情況:(1)當時,令,,則,,排除B、C選項;(2)當時,令,,則,排除A選項.故選:D.【點睛】比較大小通常采用作差法,本題主要考查不等式與不等關系,不等式的基本性質(zhì),利用特殊值代入法,排除不符合條件的選項,得到符合條件的選項,是一種簡單有效的方法,屬于中等題.5、A【解析】
設點,則點,,利用向量數(shù)量積的坐標運算可得,利用二次函數(shù)的性質(zhì)可得最值.【詳解】解:設點,則點,,,,當時,取最小值,最小值為.故選:A.【點睛】本題考查拋物線背景下的向量的坐標運算,考查學生的計算能力,是基礎題.6、B【解析】考點:程序框圖.分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)求S的值,我們用表格列出程序運行過程中各變量的值的變化情況,不難給出答案.解:程序在運行過程中各變量的值如下表示:Si是否繼續(xù)循環(huán)循環(huán)前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后當i<5時退出,故選B.7、B【解析】
根據(jù)特殊值及函數(shù)的單調(diào)性判斷即可;【詳解】解:當時,,無意義,故排除A;又,則,故排除D;對于C,當時,,所以不單調(diào),故排除C;故選:B【點睛】本題考查根據(jù)函數(shù)圖象選擇函數(shù)解析式,這類問題利用特殊值與排除法是最佳選擇,屬于基礎題.8、C【解析】
由幾何概型的概率計算,知每次生成一個實數(shù)小于1的概率為,結(jié)合獨立事件發(fā)生的概率計算即可.【詳解】∵每次生成一個實數(shù)小于1的概率為.∴這3個實數(shù)都小于1的概率為.故選:C.【點睛】本題考查獨立事件同時發(fā)生的概率,考查學生基本的計算能力,是一道容易題.9、D【解析】
根據(jù)函數(shù)為上的奇函數(shù)可得,由函數(shù)的對稱軸及單調(diào)性即可確定的值,進而確定函數(shù)的解析式,即可求得的值.【詳解】函數(shù)(,)是上的奇函數(shù),則,所以.又的圖象關于直線對稱可得,,即,,由函數(shù)的單調(diào)區(qū)間知,,即,綜上,則,.故選:D【點睛】本題考查了三角函數(shù)的圖象與性質(zhì)的綜合應用,由對稱軸、奇偶性及單調(diào)性確定參數(shù),屬于中檔題.10、A【解析】
點的坐標為,,展開利用均值不等式得到最值,將點代入雙曲線計算得到答案.【詳解】不妨設點的坐標為,由于為定值,由正弦定理可知當取得最大值時,的外接圓面積取得最小值,也等價于取得最大值,因為,,所以,當且僅當,即當時,等號成立,此時最大,此時的外接圓面積取最小值,點的坐標為,代入可得,.所以雙曲線的方程為.故選:【點睛】本題考查了求雙曲線方程,意在考查學生的計算能力和應用能力.11、A【解析】
計算,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,屬于簡單題.12、A【解析】
先將函數(shù)解析式化簡為,結(jié)合題意可求得切點及其范圍,根據(jù)導數(shù)幾何意義,即可求得的值.【詳解】函數(shù)即直線與函數(shù)圖象恰有四個公共點,結(jié)合圖象知直線與函數(shù)相切于,,因為,故,所以.故選:A.【點睛】本題考查了三角函數(shù)的圖像與性質(zhì)的綜合應用,由交點及導數(shù)的幾何意義求函數(shù)值,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】因為sinα∈[-1,1],所以-sinα∈[-1,1],所以已知直線的斜率范圍為[-1,1],由傾斜角與斜率關系得傾斜角范圍是.答案:14、20+45,8【解析】試題分析:由題意得,該幾何體為三棱柱,故其表面積S=2×1體積V=12×4×2×2=8,故填:20+4考點:1.三視圖;2.空間幾何體的表面積與體積.15、6【解析】由題得所以焦距,故第一個空填6.由題得漸近線方程為.故第二個空填.16、3【解析】
先根據(jù)約束條件畫出可行域,再由y=2x-z表示直線在y軸上的截距最大即可得解.【詳解】x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,畫出可行域如圖所示.目標函數(shù)z=2x-y,即平移直線y=2x-z,截距最大時即為所求.2y+1=0x-y-1=0點A(12,z在點A處有最小值:z=2×1故答案為:32【點睛】本題主要考查線性規(guī)劃的基本應用,利用數(shù)形結(jié)合,結(jié)合目標函數(shù)的幾何意義是解決此類問題的基本方法.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)①極小值為1,無極大值.②實數(shù)k的值為1.(2)【解析】
(1)①將代入可得,求導討論函數(shù)單調(diào)性,即得極值;②設是函數(shù)的一個“F點”(),即是的零點,那么由導數(shù)可知,且,可得,根據(jù)可得,設,由的單調(diào)性可得,即得.(2)方法一:先求的導數(shù),存在兩個不相等的“F點”,,可以由和韋達定理表示出,的關系,再由,可得的關系式,根據(jù)已知解即得.方法二:由函數(shù)存在不相等的兩個“F點”和,可知,是關于x的方程組的兩個相異實數(shù)根,由得,分兩種情況:是函數(shù)一個“F點”,不是函數(shù)一個“F點”,進行討論即得.【詳解】解:(1)①當時,(),則有(),令得,列表如下:x10極小值故函數(shù)在處取得極小值,極小值為1,無極大值.②設是函數(shù)的一個“F點”().(),是函數(shù)的零點.,由,得,,由,得,即.設,則,所以函數(shù)在上單調(diào)增,注意到,所以方程存在唯一實根1,所以,得,根據(jù)①知,時,是函數(shù)的極小值點,所以1是函數(shù)的“F點”.綜上,得實數(shù)k的值為1.(2)由(a,b,,),可得().又函數(shù)存在不相等的兩個“F點”和,,是關于x的方程()的兩個相異實數(shù)根.又,,,即,從而,,即..,,解得.所以,實數(shù)a的取值范圍為.(2)(解法2)因為(a,b,,)所以().又因為函數(shù)存在不相等的兩個“F點”和,所以,是關于x的方程組的兩個相異實數(shù)根.由得,.(2.1)當是函數(shù)一個“F點”時,且.所以,即.又,所以,所以.又,所以.(2.2)當不是函數(shù)一個“F點”時,則,是關于x的方程的兩個相異實數(shù)根.又,所以得所以,得.所以,得.綜合(2.1)(2.2),實數(shù)a的取值范圍為.【點睛】本題考查利用導數(shù)求函數(shù)極值,以及由函數(shù)的極值求參數(shù)值等,是一道關于函數(shù)導數(shù)的綜合性題目,考查學生的分析和數(shù)學運算能力,有一定難度.18、(1),證明見解析;(2)【解析】
(1)首先利用賦值法求出的值,進一步利用定義求出數(shù)列的通項公式;(2)首先利用疊乘法求出數(shù)列的通項公式,進一步利用數(shù)列的單調(diào)性和基本不等式的應用求出參數(shù)的范圍.【詳解】(1)數(shù)列滿足,,其前項和為.所以,,則,,,所以猜想得:.證明:由于,所以,則:(常數(shù)),所以數(shù)列是首項為1,公差為的等差數(shù)列.所以,整理得.(2)數(shù)列滿足,,所以,則,所以.則,所以,所以,整理得,由于,所以,即.【點睛】本題考查的知識要點:數(shù)列的通項公式的求法及應用,疊乘法的應用,函數(shù)的單調(diào)性在數(shù)列中的應用,基本不等式的應用,主要考察學生的運算能力和轉(zhuǎn)換能力,屬于中檔題型.19、(1)見解析;(2).【解析】
(1)取的中點,連接、,連接,證明出四邊形為平行四邊形,可得出,然后利用線面平行的判定定理可證得結(jié)論;(2)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得二面角的余弦值,進而可求得其正弦值.【詳解】(1)取中點,連接、、,且,四邊形為平行四邊形,且,、分別為、中點,且,則四邊形為平行四邊形,且,且,且,所以,四邊形為平行四邊形,且,四邊形為平行四邊形,,平面,平面,平面;(2)以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,則、、、,,,,設平面的法向量為,由,得,取,則,,,設平面的法向量為,由,得,取,則,,,,,因此,二面角的正弦值為.【點睛】本題考查線面平行的證明,同時也考查了利用空間向量法求解二面角,考查推理能力與計算能力,屬于中等題.20、(1)(2)見解析【解析】
(1)取,則;取,則,∴;(2)要證,只需證,當時,;假設當時,結(jié)論成立,即,兩邊同乘以3得:而∴,即時結(jié)論也成立,∴當時,成立.綜上原不等式獲證.21、(1)(2)的遞減區(qū)間為和【解析】
(1)化簡函數(shù),代入,計算即可;(2)先利用正弦函數(shù)的圖象與性質(zhì)求出函數(shù)的單調(diào)遞減區(qū)間,再結(jié)合即可求出.【詳解】(1),從而.(2)令.解得.即函數(shù)的所有減區(qū)間為,考慮到,取,可得,,故的遞減區(qū)間為和.【點睛】本題主要考查了三角函數(shù)的恒等變形,正弦函數(shù)的圖象與性質(zhì),屬于中檔題.22、(1);(2)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,的極小值為,無極大值;(3)見解析.【解析】
(1)切點既在切線上又在曲線上得一方程,再根據(jù)斜率等于該點的導數(shù)再列一方程,解方程組即可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 辦公樓安全保衛(wèi)管理規(guī)定(4篇)
- 瑜伽體驗課程設計教案
- 直線式灌裝機課程設計
- 2024年職業(yè)素養(yǎng)培訓考試題庫(附答案)
- 自動線plc課程設計
- 線上教學課程設計大賽
- 餐飲行業(yè)后勤管理工作總結(jié)
- 室內(nèi)設計師工作總結(jié)
- 餐飲行業(yè)的衛(wèi)生管理要點
- 客戶服務行業(yè)美工工作總結(jié)
- 醫(yī)院“無陪護”病房試點工作方案
- 清華大學大學物理-光的偏振
- 心理健康教育-網(wǎng)絡與青少年
- 高中英語人教版(2019) 選擇性必修一 Unit 3 課文語法填空(含答案)
- 三年級道德與法制上學期期末考試質(zhì)量分析集合3篇
- 2021-2022學年陜西省寶雞市陳倉區(qū)北師大版六年級上冊期末考試數(shù)學試卷(含答案解析)
- 應用PDCA提高入院宣教的知曉率
- 線性系統(tǒng)理論鄭大鐘307張課件
- 2019-2020學年第一學期廣東省廣州市天河區(qū)3年級數(shù)學期末考試卷
- 纏論公式(最完美自動畫筆公式)主圖
- 肩凝證(肩周炎)的臨床路徑修改后
評論
0/150
提交評論