版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
黑龍江省伊春市重點達標名校2023-2024學年十校聯(lián)考最后數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若一組數(shù)據(jù)2,3,,5,7的眾數(shù)為7,則這組數(shù)據(jù)的中位數(shù)為()A.2 B.3 C.5 D.72.如圖,AB是⊙O的直徑,點E為BC的中點,AB=4,∠BED=120°,則圖中陰影部分的面積之和為()A.1 B. C. D.3.要組織一次排球邀請賽,參賽的每個隊之間都要比賽一場,根據(jù)場地和時間等條件,賽程計劃7天,每天安排4場比賽.設比賽組織者應邀請個隊參賽,則滿足的關系式為()A. B. C. D.4.單項式2a3b的次數(shù)是()A.2 B.3 C.4 D.55.如圖,在矩形紙片ABCD中,已知AB=,BC=1,點E在邊CD上移動,連接AE,將多邊形ABCE沿直線AE折疊,得到多邊形AFGE,點B、C的對應點分別為點F、G.在點E從點C移動到點D的過程中,則點F運動的路徑長為()A.π B.π C.π D.π6.下列運算正確的是()A.a(chǎn)﹣3a=2a B.(ab2)0=ab2 C.= D.×=97.已知⊙O的半徑為13,弦AB∥CD,AB=24,CD=10,則四邊形ACDB的面積是()A.119 B.289 C.77或119 D.119或2898.定義:若點P(a,b)在函數(shù)y=1x的圖象上,將以a為二次項系數(shù),b為一次項系數(shù)構造的二次函數(shù)y=ax2+bx稱為函數(shù)y=1x的一個“派生函數(shù)”.例如:點(2,12)在函數(shù)y=1x的圖象上,則函數(shù)y=2x2+(1)存在函數(shù)y=1x(2)函數(shù)y=1xA.命題(1)與命題(2)都是真命題B.命題(1)與命題(2)都是假命題C.命題(1)是假命題,命題(2)是真命題D.命題(1)是真命題,命題(2)是假命題9.如圖,這是根據(jù)某班40名同學一周的體育鍛煉情況繪制的條形統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的信息,可得到該班40名同學一周參加體育鍛煉時間的眾數(shù)、中位數(shù)分別是()A.8,9 B.8,8.5 C.16,8.5 D.16,10.510.把一副三角板如圖(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜邊AB=4,CD=1.把三角板DCE繞著點C順時針旋轉(zhuǎn)11°得到△D1CE1(如圖2),此時AB與CD1交于點O,則線段AD1的長度為()A. B. C. D.411.如圖,在△ABC中,點D,E分別在邊AB,AC上,且AEAB=ADA.1:3B.1:2C.1:3D.12.用配方法解方程時,可將方程變形為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,點A,B在反比例函數(shù)y=(x>0)的圖象上,點C,D在反比例函數(shù)y=(k>0)的圖象上,AC∥BD∥y軸,已知點A,B的橫坐標分別為1,2,△OAC與△ABD的面積之和為,則k的值為_____.14.2018年1月4日在萍鄉(xiāng)市第十五屆人民代表大會第三次會議報告指出,去年我市城鎮(zhèn)居民人均可支配收入33080元,33080用科學記數(shù)法可表示為__.15.如圖所示,在等腰△ABC中,AB=AC,∠A=36°,將△ABC中的∠A沿DE向下翻折,使點A落在點C處.若AE=,則BC的長是_____.16.有一組數(shù)據(jù):3,5,5,6,7,這組數(shù)據(jù)的眾數(shù)為_____.17.一組“數(shù)值轉(zhuǎn)換機”按下面的程序計算,如果輸入的數(shù)是36,則輸出的結果為106,要使輸出的結果為127,則輸入的最小正整數(shù)是__________.18.如圖,P是⊙O的直徑AB延長線上一點,PC切⊙O于點C,PC=6,BC:AC=1:2,則AB的長為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知一個口袋中裝有7個只有顏色不同的球,其中3個白球,4個黑球.(1)求從中隨機抽取出一個黑球的概率是多少?(2)若往口袋中再放入x個白球和y個黑球,從口袋中隨機取出一個白球的概率是14,求y與x20.(6分)已知拋物線y=x2﹣6x+9與直線y=x+3交于A,B兩點(點A在點B的左側(cè)),拋物線的頂點為C,直線y=x+3與x軸交于點D.(1)求拋物線的頂點C的坐標及A,B兩點的坐標;(2)將拋物線y=x2﹣6x+9向上平移1個單位長度,再向左平移t(t>0)個單位長度得到新拋物線,若新拋物線的頂點E在△DAC內(nèi),求t的取值范圍;(3)點P(m,n)(﹣3<m<1)是拋物線y=x2﹣6x+9上一點,當△PAB的面積是△ABC面積的2倍時,求m,n的值.21.(6分)如圖,在△ABC中,∠ABC=90°,BD為AC邊上的中線.(1)按如下要求尺規(guī)作圖,保留作圖痕跡,標注相應的字母:過點C作直線CE,使CE⊥BC于點C,交BD的延長線于點E,連接AE;(2)求證:四邊形ABCE是矩形.22.(8分)“中國制造”是世界上認知度最高的標簽之一,因此,我縣越來越多的群眾選擇購買國產(chǎn)空調(diào),已知購買1臺A型號的空調(diào)比1臺B型號的空調(diào)少200元,購買2臺A型號的空調(diào)與3臺B型號的空調(diào)共需11200元,求A、B兩種型號的空調(diào)的購買價各是多少元?23.(8分)“十九大”報告提出了我國將加大治理環(huán)境污染的力度,還我青山綠水,其中霧霾天氣讓環(huán)保和健康問題成為焦點,為了調(diào)查學生對霧霾天氣知識的了解程度,某校在全校學生中抽取400名同學做了一次調(diào)查,根據(jù)調(diào)查統(tǒng)計結果,繪制了不完整的一種統(tǒng)計圖表.對霧霾了解程度的統(tǒng)計表對霧霾的了解程度百分比A.非常了解5%B.比較了解mC.基本了解45%D.不了解n請結合統(tǒng)計圖表,回答下列問題:統(tǒng)計表中:m=,n=;請在圖1中補全條形統(tǒng)計圖;請問在圖2所示的扇形統(tǒng)計圖中,D部分扇形所對應的圓心角是多少度?24.(10分)灞橋區(qū)教育局為了了解七年級學生參加社會實踐活動情況,隨機抽取了鐵一中濱河學部分七年級學生2016﹣2017學年第一學期參加實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了兩幅統(tǒng)計圖,下面給出了兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,回答下列問題:(1)a=%,并補全條形圖.(2)在本次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?(3)如果該區(qū)共有七年級學生約9000人,請你估計活動時間不少于6天的學生人數(shù)大約有多少?25.(10分)如圖,已知拋物線經(jīng)過原點o和x軸上一點A(4,0),拋物線頂點為E,它的對稱軸與x軸交于點D.直線y=﹣2x﹣1經(jīng)過拋物線上一點B(﹣2,m)且與y軸交于點C,與拋物線的對稱軸交于點F.(1)求m的值及該拋物線對應的解析式;(2)P(x,y)是拋物線上的一點,若S△ADP=S△ADC,求出所有符合條件的點P的坐標;(3)點Q是平面內(nèi)任意一點,點M從點F出發(fā),沿對稱軸向上以每秒1個單位長度的速度勻速運動,設點M的運動時間為t秒,是否能使以Q、A、E、M四點為頂點的四邊形是菱形.若能,請直接寫出點M的運動時間t的值;若不能,請說明理由.26.(12分)我市正在開展“食品安全城市”創(chuàng)建活動,為了解學生對食品安全知識的了解情況,學校隨機抽取了部分學生進行問卷調(diào)查,將調(diào)查結果按照“A非常了解、B了解、C了解較少、D不了解”四類分別進行統(tǒng)計,并繪制了下列兩幅統(tǒng)計圖(不完整).請根據(jù)圖中信息,解答下列問題:此次共調(diào)查了名學生;扇形統(tǒng)計圖中D所在扇形的圓心角為;將上面的條形統(tǒng)計圖補充完整;若該校共有800名學生,請你估計對食品安全知識“非常了解”的學生的人數(shù).27.(12分)某中學開展了“手機伴我健康行”主題活動,他們隨機抽取部分學生進行“使用手機目的”和“每周使用手機的時間”的問卷調(diào)查,并繪制成如圖①,②所示的統(tǒng)計圖,已知“查資料”的人數(shù)是40人.
請你根據(jù)圖中信息解答下列問題:
(1)在扇形統(tǒng)計圖中,“玩游戲”對應的圓心角度數(shù)是_____°;
(2)補全條形統(tǒng)計圖;
(3)該校共有學生1200人,試估計每周使用手機時間在2小時以上(不含2小時)的人數(shù).
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】試題解析:∵這組數(shù)據(jù)的眾數(shù)為7,∴x=7,則這組數(shù)據(jù)按照從小到大的順序排列為:2,3,1,7,7,中位數(shù)為:1.故選C.考點:眾數(shù);中位數(shù).2、C【解析】連接AE,OD,OE.∵AB是直徑,∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.∵OA=OD.∴△AOD是等邊三角形.∴∠A=60°.又∵點E為BC的中點,∠AED=90°,∴AB=AC.∴△ABC是等邊三角形,∴△EDC是等邊三角形,且邊長是△ABC邊長的一半2,高是.∴∠BOE=∠EOD=60°,∴和弦BE圍成的部分的面積=和弦DE圍成的部分的面積.∴陰影部分的面積=.故選C.3、A【解析】
根據(jù)應用題的題目條件建立方程即可.【詳解】解:由題可得:即:故答案是:A.【點睛】本題主要考察一元二次方程的應用題,正確理解題意是解題的關鍵.4、C【解析】分析:根據(jù)單項式的性質(zhì)即可求出答案.詳解:該單項式的次數(shù)為:3+1=4故選C.點睛:本題考查單項式的次數(shù)定義,解題的關鍵是熟練運用單項式的次數(shù)定義,本題屬于基礎題型.5、D【解析】
點F的運動路徑的長為弧FF'的長,求出圓心角、半徑即可解決問題.【詳解】如圖,點F的運動路徑的長為弧FF'的長,在Rt△ABC中,∵tan∠BAC=,∴∠BAC=30°,∵∠CAF=∠BAC=30°,∴∠BAF=60°,∴∠FAF′=120°,∴弧FF'的長=.故選D.【點睛】本題考查了矩形的性質(zhì)、特殊角的三角函數(shù)值、含30°角的直角三角形的性質(zhì)、弧長公式等知識,解題的關鍵是判斷出點F運動的路徑.6、D【解析】
直接利用合并同類項法則以及二次根式的性質(zhì)、二次根式乘法、零指數(shù)冪的性質(zhì)分別化簡得出答案.【詳解】解:A、a﹣3a=﹣2a,故此選項錯誤;B、(ab2)0=1,故此選項錯誤;C、故此選項錯誤;D、×=9,正確.故選D.【點睛】此題主要考查了合并同類項以及二次根式的性質(zhì)、二次根式乘法、零指數(shù)冪的性質(zhì),正確把握相關性質(zhì)是解題關鍵.7、D【解析】
分兩種情況進行討論:①弦AB和CD在圓心同側(cè);②弦AB和CD在圓心異側(cè);作出半徑和弦心距,利用勾股定理和垂徑定理,然后按梯形面積的求解即可.【詳解】解:①當弦AB和CD在圓心同側(cè)時,如圖1,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∴OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12-5=7cm;∴四邊形ACDB的面積②當弦AB和CD在圓心異側(cè)時,如圖2,∵AB=24cm,CD=10cm,∴.AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm.∴四邊形ACDB的面積∴四邊形ACDB的面積為119或289.故選:D.【點睛】本題考查了勾股定理和垂徑定理的應用.此題難度適中,解題的關鍵是注意掌握數(shù)形結合思想與分類討論思想的應用,小心別漏解.8、C【解析】試題分析:(1)根據(jù)二次函數(shù)y=ax2+bx的性質(zhì)a、b同號對稱軸在y軸左側(cè),a、b異號對稱軸在y軸右側(cè)即可判斷.(2)根據(jù)“派生函數(shù)”y=ax2+bx,x=0時,y=0,經(jīng)過原點,不能得出結論.(1)∵P(a,b)在y=上,∴a和b同號,所以對稱軸在y軸左側(cè),∴存在函數(shù)y=的一個“派生函數(shù)”,其圖象的對稱軸在y軸的右側(cè)是假命題.(2)∵函數(shù)y=的所有“派生函數(shù)”為y=ax2+bx,∴x=0時,y=0,∴所有“派生函數(shù)”為y=ax2+bx經(jīng)過原點,∴函數(shù)y=的所有“派生函數(shù)”,的圖象都進過同一點,是真命題.考點:(1)命題與定理;(2)新定義型9、A【解析】
根據(jù)中位數(shù)、眾數(shù)的概念分別求得這組數(shù)據(jù)的中位數(shù)、眾數(shù).【詳解】解:眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),即8;而將這組數(shù)據(jù)從小到大的順序排列后,處于20,21兩個數(shù)的平均數(shù),由中位數(shù)的定義可知,這組數(shù)據(jù)的中位數(shù)是9.故選A.【點睛】考查了中位數(shù)、眾數(shù)的概念.本題為統(tǒng)計題,考查眾數(shù)與中位數(shù)的意義,中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會錯誤地將這組數(shù)據(jù)最中間的那個數(shù)當作中位數(shù).10、A【解析】試題分析:由題意易知:∠CAB=41°,∠ACD=30°.若旋轉(zhuǎn)角度為11°,則∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,則AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=.故選A.考點:1.旋轉(zhuǎn);2.勾股定理.11、C【解析】∵AEAB∴△ABC∽△AED?!郤Δ∴SΔ12、D【解析】
配方法一般步驟:將常數(shù)項移到等號右側(cè),左右兩邊同時加一次項系數(shù)一半的平方,配方即可.【詳解】解:故選D.【點睛】本題考查了配方法解方程的步驟,屬于簡單題,熟悉步驟是解題關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
過A作x軸垂線,過B作x軸垂線,求出A(1,1),B(2,),C(1,k),D(2,),將面積進行轉(zhuǎn)換S△OAC=S△COM﹣S△AOM,S△ABD=S梯形AMND﹣S梯形AAMNB進而求解.【詳解】解:過A作x軸垂線,過B作x軸垂線,點A,B在反比例函數(shù)y=(x>0)的圖象上,點A,B的橫坐標分別為1,2,∴A(1,1),B(2,),∵AC∥BD∥y軸,∴C(1,k),D(2,),∵△OAC與△ABD的面積之和為,,S△ABD=S梯形AMND﹣S梯形AAMNB,,∴k=1,故答案為1.【點睛】本題考查反比例函數(shù)的性質(zhì),k的幾何意義.能夠?qū)⑷切蚊娣e進行合理的轉(zhuǎn)換是解題的關鍵.14、3.308×1.【解析】
正確用科學計數(shù)法表示即可.【詳解】解:33080=3.308×1【點睛】科學記數(shù)法的表示形式為的形式,其中1<|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值大于10時,n是正數(shù);當原數(shù)的絕對值小于1時,n是負數(shù).15、【解析】【分析】由折疊的性質(zhì)可知AE=CE,再證明△BCE是等腰三角形即可得到BC=CE,問題得解.【詳解】∵AB=AC,∠A=36°,∴∠B=∠ACB==72°,∵將△ABC中的∠A沿DE向下翻折,使點A落在點C處,∴AE=CE,∠A=∠ECA=36°,∴∠CEB=72°,∴BC=CE=AE=,故答案為.【點睛】本題考查了等腰三角形的判斷和性質(zhì)、折疊的性質(zhì)以及三角形內(nèi)角和定理的運用,證明△BCE是等腰三角形是解題的關鍵.16、1【解析】
根據(jù)眾數(shù)的概念進行求解即可得.【詳解】在數(shù)據(jù)3,1,1,6,7中1出現(xiàn)次數(shù)最多,所以這組數(shù)據(jù)的眾數(shù)為1,故答案為:1.【點睛】本題考查了眾數(shù)的概念,熟知一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù)是解題的關鍵.17、15【解析】
分析:設輸出結果為y,觀察圖形我們可以得出x和y的關系式為:,將y的值代入即可求得x的值.詳解:∵當y=127時,解得:x=43;當y=43時,解得:x=15;當y=15時,解得不符合條件.則輸入的最小正整數(shù)是15.故答案為15.點睛:考查一元一次方程的應用,熟練掌握一元一次方程的應用是解題的關鍵.18、1【解析】PC切⊙O于點C,則∠PCB=∠A,∠P=∠P,
∴△PCB∽△PAC,∴,∵BP=PC=3,
∴PC2=PB?PA,即36=3?PA,
∵PA=12
∴AB=12-3=1.故答案是:1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)47.(2)y=3x+5【解析】試題分析:(1)根據(jù)取出黑球的概率=黑球的數(shù)量÷球的總數(shù)量得出答案;(2)根據(jù)概率的計算方法得出方程,從求出函數(shù)關系式.試題解析:(1)取出一個黑球的概率P=(2)∵取出一個白球的概率P=∴∴12+4x=7+x+y∴y與x的函數(shù)關系式為:y=3x+5.考點:概率20、(1)C(2,0),A(1,4),B(1,9);(2)<t<5;(2)m=,∴n=.【解析】分析:(Ⅰ)將拋物線的一般式配方為頂點式即可求出點C的坐標,聯(lián)立拋物線與直線的解析式即可求出A、B的坐標.(Ⅱ)由題意可知:新拋物線的頂點坐標為(2﹣t,1),然后求出直線AC的解析式后,將點E的坐標分別代入直線AC與AD的解析式中即可求出t的值,從而可知新拋物線的頂點E在△DAC內(nèi),求t的取值范圍.(Ⅲ)直線AB與y軸交于點F,連接CF,過點P作PM⊥AB于點M,PN⊥x軸于點N,交DB于點G,由直線y=x+2與x軸交于點D,與y軸交于點F,得D(﹣2,0),F(xiàn)(0,2),易得CF⊥AB,△PAB的面積是△ABC面積的2倍,所以AB?PM=AB?CF,PM=2CF=1,從而可求出PG=3,利用點G在直線y=x+2上,P(m,n),所以G(m,m+2),所以PG=n﹣(m+2),所以n=m+4,由于P(m,n)在拋物線y=x2﹣1x+9上,聯(lián)立方程從而可求出m、n的值.詳解:(I)∵y=x2﹣1x+9=(x﹣2)2,∴頂點坐標為(2,0).聯(lián)立,解得:或;(II)由題意可知:新拋物線的頂點坐標為(2﹣t,1),設直線AC的解析式為y=kx+b將A(1,4),C(2,0)代入y=kx+b中,∴,解得:,∴直線AC的解析式為y=﹣2x+1.當點E在直線AC上時,﹣2(2﹣t)+1=1,解得:t=.當點E在直線AD上時,(2﹣t)+2=1,解得:t=5,∴當點E在△DAC內(nèi)時,<t<5;(III)如圖,直線AB與y軸交于點F,連接CF,過點P作PM⊥AB于點M,PN⊥x軸于點N,交DB于點G.由直線y=x+2與x軸交于點D,與y軸交于點F,得D(﹣2,0),F(xiàn)(0,2),∴OD=OF=2.∵∠FOD=90°,∴∠OFD=∠ODF=45°.∵OC=OF=2,∠FOC=90°,∴CF==2,∠OFC=∠OCF=45°,∴∠DFC=∠DFO+∠OFC=45°+45°=90°,∴CF⊥AB.∵△PAB的面積是△ABC面積的2倍,∴AB?PM=AB?CF,∴PM=2CF=1.∵PN⊥x軸,∠FDO=45°,∴∠DGN=45°,∴∠PGM=45°.在Rt△PGM中,sin∠PGM=,∴PG===3.∵點G在直線y=x+2上,P(m,n),∴G(m,m+2).∵﹣2<m<1,∴點P在點G的上方,∴PG=n﹣(m+2),∴n=m+4.∵P(m,n)在拋物線y=x2﹣1x+9上,∴m2﹣1m+9=n,∴m2﹣1m+9=m+4,解得:m=.∵﹣2<m<1,∴m=不合題意,舍去,∴m=,∴n=m+4=.點睛:本題是二次函數(shù)綜合題,涉及待定系數(shù)法,解方程,勾股定理,三角形的面積公式,綜合程度較高,需要學生綜合運用所學知識.21、(1)見解析;(2)見解析.【解析】
(1)根據(jù)題意作圖即可;
(2)先根據(jù)BD為AC邊上的中線,AD=DC,再證明△ABD≌△CED(AAS)得AB=EC,已知∠ABC=90°即可得四邊形ABCE是矩形.【詳解】(1)解:如圖所示:E點即為所求;(2)證明:∵CE⊥BC,∴∠BCE=90°,∵∠ABC=90°,∴∠BCE+∠ABC=180°,∴AB∥CE,∴∠ABE=∠CEB,∠BAC=∠ECA,∵BD為AC邊上的中線,∴AD=DC,在△ABD和△CED中,∴△ABD≌△CED(AAS),∴AB=EC,∴四邊形ABCE是平行四邊形,∵∠ABC=90°,∴平行四邊形ABCE是矩形.【點睛】本題考查了全等三角形的判定與性質(zhì)與矩形的性質(zhì),解題的關鍵是熟練的掌握全等三角形的判定與性質(zhì)與矩形的性質(zhì).22、A、B兩種型號的空調(diào)購買價分別為2120元、2320元【解析】試題分析:根據(jù)題意,設出A、B兩種型號的空調(diào)購買價分別為x元、y元,然后根據(jù)“已知購買1臺A型號的空調(diào)比1臺B型號的空調(diào)少200元,購買2臺A型號的空調(diào)與3臺B型號的空調(diào)共需11200元”,列出方程求解即可.試題解析:設A、B兩種型號的空調(diào)購買價分別為x元、y元,依題意得:解得:答:A、B兩種型號的空調(diào)購買價分別為2120元、2320元23、(1)20;15%;35%;(2)見解析;(3)126°.【解析】
(1)根據(jù)被調(diào)查學生總?cè)藬?shù),用B的人數(shù)除以被調(diào)查的學生總?cè)藬?shù)計算即可求出m,再根據(jù)各部分的百分比的和等于1計算即可求出n;(2)求出D的學生人數(shù),然后補全統(tǒng)計圖即可;(3)用D的百分比乘360°計算即可得解.【詳解】解:(1)非常了解的人數(shù)為20,60÷400×100%=15%,1﹣5%﹣15%﹣45%=35%,故答案為20;15%;35%;(2)∵D等級的人數(shù)為:400×35%=140,∴補全條形統(tǒng)計圖如圖所示:(3)D部分扇形所對應的圓心角:360°×35%=126°.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小24、(1)10,補圖見解析;(2)眾數(shù)是5,中位數(shù)是1;(3)活動時間不少于1天的學生人數(shù)大約有5400人.【解析】
(1)用1減去其他天數(shù)所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出該扇形所對圓心角的度數(shù);根據(jù)1天的人數(shù)和所占的百分比求出總?cè)藬?shù),再乘以8天的人數(shù)所占的百分比,即可補全統(tǒng)計圖;(2)根據(jù)眾數(shù)和中位數(shù)的定義即可求出答案;(3)用總?cè)藬?shù)乘以活動時間不少于1天的人數(shù)所占的百分比即可求出答案.【詳解】解:(1)扇形統(tǒng)計圖中a=1﹣5%﹣40%﹣20%﹣25%=10%,該扇形所對圓心角的度數(shù)為310°×10%=31°,參加社會實踐活動的天數(shù)為8天的人數(shù)是:×10%=10(人),補圖如下:故答案為10;(2)抽樣調(diào)查中總?cè)藬?shù)為100人,結合條形統(tǒng)計圖可得:眾數(shù)是5,中位數(shù)是1.(3)根據(jù)題意得:9000×(25%+10%+5%+20%)=5400(人),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全民健身健康挑戰(zhàn)合同
- 2025年浙教新版高三語文上冊階段測試試卷含答案
- 2025年統(tǒng)編版選修4地理下冊階段測試試卷含答案
- 2025年度頂級時尚品牌代言人形象推廣合同4篇
- 寧波2025年度房地產(chǎn)項目合作開發(fā)合同范本4篇
- 2025年中國國電甘肅電力有限公司招聘筆試參考題庫含答案解析
- 2025年度虛擬現(xiàn)實(VR)內(nèi)容制作與分發(fā)合同4篇
- 2025年華東師大版選擇性必修3地理下冊月考試卷
- 2025年浙江紹興諸暨市東大次塢污水處理有限公司招聘筆試參考題庫附帶答案詳解
- 2025年粵教版高二歷史下冊月考試卷含答案
- 專題24 短文填空 選詞填空 2024年中考英語真題分類匯編
- 再生障礙性貧血課件
- 產(chǎn)后抑郁癥的護理查房
- 2024年江蘇護理職業(yè)學院高職單招(英語/數(shù)學/語文)筆試歷年參考題庫含答案解析
- 電能質(zhì)量與安全課件
- 醫(yī)藥營銷團隊建設與管理
- 工程項目設計工作管理方案及設計優(yōu)化措施
- 圍場滿族蒙古族自治縣金匯螢石開采有限公司三義號螢石礦礦山地質(zhì)環(huán)境保護與土地復墾方案
- 小升初幼升小擇校畢業(yè)升學兒童簡歷
- 資金支付審批單
- 第一單元(金融知識進課堂)課件
評論
0/150
提交評論