2024屆內蒙古北重三中高考數(shù)學一模試卷含解析_第1頁
2024屆內蒙古北重三中高考數(shù)學一模試卷含解析_第2頁
2024屆內蒙古北重三中高考數(shù)學一模試卷含解析_第3頁
2024屆內蒙古北重三中高考數(shù)學一模試卷含解析_第4頁
2024屆內蒙古北重三中高考數(shù)學一模試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆內蒙古北重三中高考數(shù)學一模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若集合,,則下列結論正確的是()A. B. C. D.2.《九章算術》勾股章有一“引葭赴岸”問題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問水深,葭各幾何?”,其意思是:有一個直徑為一丈的圓柱形水池,池中心生有一顆類似蘆葦?shù)闹参?,露出水面兩尺,若把它引向岸邊,正好與岸邊齊,問水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機取一點,則該點取自水下的概率為()A. B. C. D.3.的二項展開式中,的系數(shù)是()A.70 B.-70 C.28 D.-284.關于函數(shù),有下列三個結論:①是的一個周期;②在上單調遞增;③的值域為.則上述結論中,正確的個數(shù)為()A. B. C. D.5.已知f(x)=ax2+bx是定義在[a–1,2a]上的偶函數(shù),那么a+b的值是A. B.C. D.6.一個正方體被一個平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.7.已知實數(shù),滿足約束條件,則的取值范圍是()A. B. C. D.8.已知定義在上的函數(shù)滿足,且當時,,則方程的最小實根的值為()A. B. C. D.9.如圖所示,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋(球體)離蛋巢底面的最短距離為()A. B.C. D.10.設,,,則()A. B. C. D.11.已知集合,則集合真子集的個數(shù)為()A.3 B.4 C.7 D.812.已知復數(shù)z滿足(i為虛數(shù)單位),則在復平面內復數(shù)z對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.已知,(,),則=_______.14.已知函數(shù)為奇函數(shù),,且與圖象的交點為,,…,,則______.15.在中,角,,的對邊長分別為,,,滿足,,則的面積為__.16.如圖,四面體的一條棱長為,其余棱長均為1,記四面體的體積為,則函數(shù)的單調增區(qū)間是____;最大值為____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)若不等式的解集為,求的值.(2)若當時,,求的取值范圍.18.(12分)在平面直角坐標系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標點O為極點,x軸的非負半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+)=1.(1)求直線l的直角坐標方程和曲線C的普通方程;(2)已知點M(2,0),若直線l與曲線C相交于P、Q兩點,求的值.19.(12分)在極坐標系中,曲線的極坐標方程為,直線的極坐標方程為,設與交于、兩點,中點為,的垂直平分線交于、.以為坐標原點,極軸為軸的正半軸建立直角坐標系.(1)求的直角坐標方程與點的直角坐標;(2)求證:.20.(12分)在四棱錐的底面是菱形,底面,,分別是的中點,.(Ⅰ)求證:;(Ⅱ)求直線與平面所成角的正弦值;(III)在邊上是否存在點,使與所成角的余弦值為,若存在,確定點的位置;若不存在,說明理由.21.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,已知a=4,.(1)求A的余弦值;(2)求△ABC面積的最大值.22.(10分)某大型公司為了切實保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關要求,決定在全公司范圍內舉行一次普查,為此需要抽驗1000人的血樣進行化驗,由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個人的血分別化驗,這時需要驗1000次.方案②:按個人一組進行隨機分組,把從每組個人抽來的血混合在一起進行檢驗,如果每個人的血均為陰性,則驗出的結果呈陰性,這個人的血只需檢驗一次(這時認為每個人的血化驗次);否則,若呈陽性,則需對這個人的血樣再分別進行一次化驗,這樣,該組個人的血總共需要化驗次.假設此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應相互獨立.(1)設方案②中,某組個人的每個人的血化驗次數(shù)為,求的分布列;(2)設,試比較方案②中,分別取2,3,4時,各需化驗的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗次數(shù)最多可以平均減少多少次?(最后結果四舍五入保留整數(shù))

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由題意,分析即得解【詳解】由題意,故,故選:D【點睛】本題考查了元素和集合,集合和集合之間的關系,考查了學生概念理解,數(shù)學運算能力,屬于基礎題.2、C【解析】

由題意知:,,設,則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設,則在中,列勾股方程得:,解得所以從該葭上隨機取一點,則該點取自水下的概率為故選C.【點睛】本題考查了幾何概型中的長度型,屬于基礎題.3、A【解析】試題分析:由題意得,二項展開式的通項為,令,所以的系數(shù)是,故選A.考點:二項式定理的應用.4、B【解析】

利用三角函數(shù)的性質,逐個判斷即可求出.【詳解】①因為,所以是的一個周期,①正確;②因為,,所以在上不單調遞增,②錯誤;③因為,所以是偶函數(shù),又是的一個周期,所以可以只考慮時,的值域.當時,,在上單調遞增,所以,的值域為,③錯誤;綜上,正確的個數(shù)只有一個,故選B.【點睛】本題主要考查三角函數(shù)的性質應用.5、B【解析】

依照偶函數(shù)的定義,對定義域內的任意實數(shù),f(﹣x)=f(x),且定義域關于原點對稱,a﹣1=﹣2a,即可得解.【詳解】根據(jù)偶函數(shù)的定義域關于原點對稱,且f(x)是定義在[a–1,2a]上的偶函數(shù),得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故選B.【點睛】本題考查偶函數(shù)的定義,對定義域內的任意實數(shù),f(﹣x)=f(x);奇函數(shù)和偶函數(shù)的定義域必然關于原點對稱,定義域區(qū)間兩個端點互為相反數(shù).6、D【解析】

試題分析:如圖所示,截去部分是正方體的一個角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點:本題主要考查三視圖及幾何體體積的計算.7、B【解析】

畫出可行域,根據(jù)可行域上的點到原點距離,求得的取值范圍.【詳解】由約束條件作出可行域是由,,三點所圍成的三角形及其內部,如圖中陰影部分,而可理解為可行域內的點到原點距離的平方,顯然原點到所在的直線的距離是可行域內的點到原點距離的最小值,此時,點到原點的距離是可行域內的點到原點距離的最大值,此時.所以的取值范圍是.故選:B【點睛】本小題考查線性規(guī)劃,兩點間距離公式等基礎知識;考查運算求解能力,數(shù)形結合思想,應用意識.8、C【解析】

先確定解析式求出的函數(shù)值,然后判斷出方程的最小實根的范圍結合此時的,通過計算即可得到答案.【詳解】當時,,所以,故當時,,所以,而,所以,又當時,的極大值為1,所以當時,的極大值為,設方程的最小實根為,,則,即,此時令,得,所以最小實根為411.故選:C.【點睛】本題考查函數(shù)與方程的根的最小值問題,涉及函數(shù)極大值、函數(shù)解析式的求法等知識,本題有一定的難度及高度,是一道有較好區(qū)分度的壓軸選這題.9、D【解析】因為蛋巢的底面是邊長為的正方形,所以過四個頂點截雞蛋所得的截面圓的直徑為,又因為雞蛋的體積為,所以球的半徑為,所以球心到截面的距離,而截面到球體最低點距離為,而蛋巢的高度為,故球體到蛋巢底面的最短距離為.點睛:本題主要考查折疊問題,考查球體有關的知識.在解答過程中,如果遇到球體或者圓錐等幾何體的內接或外接幾何體的問題時,可以采用軸截面的方法來處理.也就是畫出題目通過球心和最低點的截面,然后利用弦長和勾股定理來解決.球的表面積公式和體積公式是需要熟記的.10、A【解析】

先利用換底公式將對數(shù)都化為以2為底,利用對數(shù)函數(shù)單調性可比較,再由中間值1可得三者的大小關系.【詳解】,,,因此,故選:A.【點睛】本題主要考查了利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調性比較大小,屬于基礎題.11、C【解析】

解出集合,再由含有個元素的集合,其真子集的個數(shù)為個可得答案.【詳解】解:由,得所以集合的真子集個數(shù)為個.故選:C【點睛】此題考查利用集合子集個數(shù)判斷集合元素個數(shù)的應用,含有個元素的集合,其真子集的個數(shù)為個,屬于基礎題.12、D【解析】

根據(jù)復數(shù)運算,求得,再求其對應點即可判斷.【詳解】,故其對應點的坐標為.其位于第四象限.故選:D.【點睛】本題考查復數(shù)的運算,以及復數(shù)對應點的坐標,屬綜合基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先利用倍角公式及差角公式把已知條件化簡可得,平方可得.【詳解】∵,∴,則,平方可得.故答案為:.【點睛】本題主要考查三角恒等變換,倍角公式的合理選擇是求解的關鍵,側重考查數(shù)學運算的核心素養(yǎng).14、18【解析】

由題意得函數(shù)f(x)與g(x)的圖像都關于點對稱,結合函數(shù)的對稱性進行求解即可.【詳解】函數(shù)為奇函數(shù),函數(shù)關于點對稱,,函數(shù)關于點對稱,所以兩個函數(shù)圖象的交點也關于點(1,2)對稱,與圖像的交點為,,…,,兩兩關于點對稱,.故答案為:18【點睛】本題考查了函數(shù)對稱性的應用,結合函數(shù)奇偶性以及分式函數(shù)的性質求出函數(shù)的對稱性是解決本題的關鍵,屬于中檔題.15、.【解析】

由二次方程有解的條件,結合輔助角公式和正弦函數(shù)的值域可求,進而可求,然后結合余弦定理可求,代入,計算可得所求.【詳解】解:把看成關于的二次方程,則,即,即為,化為,而,則,由于,可得,可得,即,代入方程可得,,,由余弦定理可得,,解得:(負的舍去),.故答案為.【點睛】本題主要考查一元二次方程的根的存在條件及輔助角公式及余弦定理和三角形的面積公式的應用,屬于中檔題.16、(或寫成)【解析】試題分析:設,取中點則,因此,所以,因為在單調遞增,最大值為所以單調增區(qū)間是,最大值為考點:函數(shù)最值,函數(shù)單調區(qū)間三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】試題分析:(1)求得的解集,根據(jù)集合相等,列出方程組,即可求解的值;(2)①當時,恒成立,②當時,轉化為,設,求得函數(shù)的最小值,即可求解的取值范圍.試題解析:(1)由,得,因為不等式的解集為,所以,故不等式可化為,解得,所以,解得.(2)①當時,恒成立,所以.②當時,可化為,設,則,所以當時,,所以.綜上,的取值范圍是.18、(1)l:,C方程為;(2)=【解析】

(1)直接利用轉換關系,把參數(shù)方程極坐標方程和直角坐標方程之間進行轉換.

(2)利用一元二次方程根和系數(shù)關系式的應用求出結果.【詳解】(1)曲線C的參數(shù)方程為(m為參數(shù)),兩式相加得到,進一步轉換為.直線l的極坐標方程為ρcos(θ+)=1,則轉換為直角坐標方程為.(2)將直線的方程轉換為參數(shù)方程為(t為參數(shù)),代入得到(t1和t2為P、Q對應的參數(shù)),所以,,所以=.【點睛】本題考查參數(shù)方程極坐標方程和直角坐標方程之間的轉換,一元二次方程根和系數(shù)關系式的應用,主要考查學生的運算能力和轉換能力及思維能力,屬于基礎題型.19、(1),;(2)見解析.【解析】

(1)將曲線的極坐標方程變形為,再由可將曲線的極坐標方程化為直角坐標方程,將直線的方程與曲線的方程聯(lián)立,求出點、的坐標,即可得出線段的中點的坐標;(2)求得,寫出直線的參數(shù)方程,將直線的參數(shù)方程與曲線的普通方程聯(lián)立,利用韋達定理求得的值,進而可得出結論.【詳解】(1)曲線的極坐標方程可化為,即,將代入曲線的方程得,所以,曲線的直角坐標方程為.將直線的極坐標方程化為普通方程得,聯(lián)立,得或,則點、,因此,線段的中點為;(2)由(1)得,,易知的垂直平分線的參數(shù)方程為(為參數(shù)),代入的普通方程得,,因此,.【點睛】本題考查曲線的極坐標方程與普通方程之間的轉化,同時也考查了直線參數(shù)幾何意義的應用,涉及韋達定理的應用,考查計算能力,屬于中等題.20、(Ⅰ)見解析;(Ⅱ);(Ⅲ)見解析.【解析】

(Ⅰ)由題意結合幾何關系可證得平面,據(jù)此證明題中的結論即可;(Ⅱ)建立空間直角坐標系,求得直線的方向向量與平面的一個法向量,然后求解線面角的正弦值即可;(Ⅲ)假設滿足題意的點存在,設,由直線與的方向向量得到關于的方程,解方程即可確定點F的位置.【詳解】(Ⅰ)由菱形的性質可得:,結合三角形中位線的性質可知:,故,底面,底面,故,且,故平面,平面,(Ⅱ)由題意結合菱形的性質易知,,,以點O為坐標原點,建立如圖所示的空間直角坐標系,則:,設平面的一個法向量為,則:,據(jù)此可得平面的一個法向量為,而,設直線與平面所成角為,則.(Ⅲ)由題意可得:,假設滿足題意的點存在,設,,據(jù)此可得:,即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論