版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山東省濰坊新2023-2024學(xué)年高三第二次模擬考試數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A.8 B.32 C.64 D.1282.設(shè)是雙曲線的左、右焦點,若雙曲線右支上存在一點,使(為坐標(biāo)原點),且,則雙曲線的離心率為()A. B. C. D.3.用1,2,3,4,5組成不含重復(fù)數(shù)字的五位數(shù),要求數(shù)字4不出現(xiàn)在首位和末位,數(shù)字1,3,5中有且僅有兩個數(shù)字相鄰,則滿足條件的不同五位數(shù)的個數(shù)是()A.48 B.60 C.72 D.1204.二項式的展開式中只有第六項的二項式系數(shù)最大,則展開式中的常數(shù)項是()A.180 B.90 C.45 D.3605.如圖在一個的二面角的棱有兩個點,線段分別在這個二面角的兩個半平面內(nèi),且都垂直于棱,且,則的長為()A.4 B. C.2 D.6.如圖1,《九章算術(shù)》中記載了一個“折竹抵地”問題:今有竹高一丈,末折抵地,去本三尺,問折者高幾何?意思是:有一根竹子,原高一丈(1丈=10尺),現(xiàn)被風(fēng)折斷,尖端落在地上,竹尖與竹根的距離三尺,問折斷處離地面的高為()尺.A. B. C. D.7.已知函數(shù)在上有兩個零點,則的取值范圍是()A. B. C. D.8.為雙曲線的左焦點,過點的直線與圓交于、兩點,(在、之間)與雙曲線在第一象限的交點為,為坐標(biāo)原點,若,且,則雙曲線的離心率為()A. B. C. D.9.已知復(fù)數(shù),(為虛數(shù)單位),若為純虛數(shù),則()A. B.2 C. D.10.如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.11.已知,則的取值范圍是()A.[0,1] B. C.[1,2] D.[0,2]12.已知a>b>0,c>1,則下列各式成立的是()A.sina>sinb B.ca>cb C.a(chǎn)c<bc D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為等比數(shù)列,是它的前項和.若,且與的等差中項為,則__________.14.的展開式中,的系數(shù)是__________.(用數(shù)字填寫答案)15.已知向量,滿足,,,則向量在的夾角為______.16.春天即將來臨,某學(xué)校開展以“擁抱春天,播種綠色”為主題的植物種植實踐體驗活動.已知某種盆栽植物每株成活的概率為,各株是否成活相互獨(dú)立.該學(xué)校的某班隨機(jī)領(lǐng)養(yǎng)了此種盆栽植物10株,設(shè)為其中成活的株數(shù),若的方差,,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)一酒企為擴(kuò)大生產(chǎn)規(guī)模,決定新建一個底面為長方形的室內(nèi)發(fā)酵館,發(fā)酵館內(nèi)有一個無蓋長方體發(fā)酵池,其底面為長方形(如圖所示),其中.結(jié)合現(xiàn)有的生產(chǎn)規(guī)模,設(shè)定修建的發(fā)酵池容積為450米,深2米.若池底和池壁每平方米的造價分別為200元和150元,發(fā)酵池造價總費(fèi)用不超過65400元(1)求發(fā)酵池邊長的范圍;(2)在建發(fā)酵館時,發(fā)酵池的四周要分別留出兩條寬為4米和米的走道(為常數(shù)).問:發(fā)酵池的邊長如何設(shè)計,可使得發(fā)酵館占地面積最小.18.(12分)的內(nèi)角、、所對的邊長分別為、、,已知.(1)求的值;(2)若,點是線段的中點,,求的面積.19.(12分)已知拋物線,焦點為,直線交拋物線于兩點,交拋物線的準(zhǔn)線于點,如圖所示,當(dāng)直線經(jīng)過焦點時,點恰好是的中點,且.(1)求拋物線的方程;(2)點是原點,設(shè)直線的斜率分別是,當(dāng)直線的縱截距為1時,有數(shù)列滿足,設(shè)數(shù)列的前n項和為,已知存在正整數(shù)使得,求m的值.20.(12分)已知圓M:及定點,點A是圓M上的動點,點B在上,點G在上,且滿足,,點G的軌跡為曲線C.(1)求曲線C的方程;(2)設(shè)斜率為k的動直線l與曲線C有且只有一個公共點,與直線和分別交于P、Q兩點.當(dāng)時,求(O為坐標(biāo)原點)面積的取值范圍.21.(12分)傳染病的流行必須具備的三個基本環(huán)節(jié)是:傳染源、傳播途徑和人群易感性.三個環(huán)節(jié)必須同時存在,方能構(gòu)成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應(yīng)該佩戴口罩.某地區(qū)已經(jīng)出現(xiàn)了新冠狀病毒的感染病人,為了掌握該地區(qū)居民的防控意識和防控情況,用分層抽樣的方法從全體居民中抽出一個容量為100的樣本,統(tǒng)計樣本中每個人出行是否會佩戴口罩的情況,得到下面列聯(lián)表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握認(rèn)為是否會佩戴口罩出行的行為與年齡有關(guān)?(2)用樣本估計總體,若從該地區(qū)出行不戴口罩的居民中隨機(jī)抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.82822.(10分)已知函數(shù).(1)求證:當(dāng)時,;(2)若對任意存在和使成立,求實數(shù)的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)給定的程序框圖,逐次計算,結(jié)合判斷條件,即可求解.【詳解】由題意,執(zhí)行上述程序框圖,可得第1次循環(huán),滿足判斷條件,;第2次循環(huán),滿足判斷條件,;第3次循環(huán),滿足判斷條件,;第4次循環(huán),滿足判斷條件,;不滿足判斷條件,輸出.故選:C.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計算與輸出,其中解答中認(rèn)真審題,逐次計算,結(jié)合判斷條件求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.2、D【解析】
利用向量運(yùn)算可得,即,由為的中位線,得到,所以,再根據(jù)雙曲線定義即可求得離心率.【詳解】取的中點,則由得,即;在中,為的中位線,所以,所以;由雙曲線定義知,且,所以,解得,故選:D【點睛】本題綜合考查向量運(yùn)算與雙曲線的相關(guān)性質(zhì),難度一般.3、A【解析】
對數(shù)字分類討論,結(jié)合數(shù)字中有且僅有兩個數(shù)字相鄰,利用分類計數(shù)原理,即可得到結(jié)論【詳解】數(shù)字出現(xiàn)在第位時,數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個數(shù)字出現(xiàn)在第位時,同理也有個數(shù)字出現(xiàn)在第位時,數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個故滿足條件的不同的五位數(shù)的個數(shù)是個故選【點睛】本題主要考查了排列,組合及簡單計數(shù)問題,解題的關(guān)鍵是對數(shù)字分類討論,屬于基礎(chǔ)題。4、A【解析】試題分析:因為的展開式中只有第六項的二項式系數(shù)最大,所以,,令,則,.考點:1.二項式定理;2.組合數(shù)的計算.5、A【解析】
由,兩邊平方后展開整理,即可求得,則的長可求.【詳解】解:,,,,,,.,,故選:.【點睛】本題考查了向量的多邊形法則、數(shù)量積的運(yùn)算性質(zhì)、向量垂直與數(shù)量積的關(guān)系,考查了空間想象能力,考查了推理能力與計算能力,屬于中檔題.6、B【解析】如圖,已知,,
∴,解得
,∴,解得
.∴折斷后的竹干高為4.55尺故選B.7、C【解析】
對函數(shù)求導(dǎo),對a分類討論,分別求得函數(shù)的單調(diào)性及極值,結(jié)合端點處的函數(shù)值進(jìn)行判斷求解.【詳解】∵,.當(dāng)時,,在上單調(diào)遞增,不合題意.當(dāng)時,,在上單調(diào)遞減,也不合題意.當(dāng)時,則時,,在上單調(diào)遞減,時,,在上單調(diào)遞增,又,所以在上有兩個零點,只需即可,解得.綜上,的取值范圍是.故選C.【點睛】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點的問題,考查了函數(shù)的單調(diào)性及極值問題,屬于中檔題.8、D【解析】
過點作,可得出點為的中點,由可求得的值,可計算出的值,進(jìn)而可得出,結(jié)合可知點為的中點,可得出,利用勾股定理求得(為雙曲線的右焦點),再利用雙曲線的定義可求得該雙曲線的離心率的值.【詳解】如下圖所示,過點作,設(shè)該雙曲線的右焦點為,連接.,.,,,為的中點,,,,,由雙曲線的定義得,即,因此,該雙曲線的離心率為.故選:D.【點睛】本題考查雙曲線離心率的求解,解題時要充分分析圖形的形狀,考查推理能力與計算能力,屬于中等題.9、C【解析】
把代入,利用復(fù)數(shù)代數(shù)形式的除法運(yùn)算化簡,由實部為0且虛部不為0求解即可.【詳解】∵,∴,∵為純虛數(shù),∴,解得.故選C.【點睛】本題考查復(fù)數(shù)代數(shù)形式的除法運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.10、D【解析】
根據(jù)三視圖判斷出幾何體是由一個三棱錐和一個三棱柱構(gòu)成,利用錐體和柱體的體積公式計算出體積并相加求得幾何體的體積.【詳解】由三視圖可知該幾何體的直觀圖是由一個三棱錐和三棱柱構(gòu)成,該多面體體積為.故選D.【點睛】本小題主要考查三視圖還原為原圖,考查柱體和錐體的體積公式,屬于基礎(chǔ)題.11、D【解析】
設(shè),可得,構(gòu)造()22,結(jié)合,可得,根據(jù)向量減法的模長不等式可得解.【詳解】設(shè),則,,∴()2?2||22=4,所以可得:,配方可得,所以,又則[0,2].故選:D.【點睛】本題考查了向量的運(yùn)算綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.12、B【解析】
根據(jù)函數(shù)單調(diào)性逐項判斷即可【詳解】對A,由正弦函數(shù)的單調(diào)性知sina與sinb大小不確定,故錯誤;對B,因為y=cx為增函數(shù),且a>b,所以ca>cb,正確對C,因為y=xc為增函數(shù),故,錯誤;對D,因為在為減函數(shù),故,錯誤故選B.【點睛】本題考查了不等式的基本性質(zhì)以及指數(shù)函數(shù)的單調(diào)性,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè)等比數(shù)列的公比為,根據(jù)題意求出和的值,進(jìn)而可求得和的值,利用等比數(shù)列求和公式可求得的值.【詳解】由等比數(shù)列的性質(zhì)可得,,由于與的等差中項為,則,則,,,,,因此,.故答案為:.【點睛】本題考查等比數(shù)列求和,解答的關(guān)鍵就是等比數(shù)列的公比,考查計算能力,屬于基礎(chǔ)題.14、【解析】
根據(jù)組合的知識,結(jié)合組合數(shù)的公式,可得結(jié)果.【詳解】由題可知:項來源可以是:(1)取1個,4個(2)取2個,3個的系數(shù)為:故答案為:【點睛】本題主要考查組合的知識,熟悉二項式定理展開式中每一項的來源,實質(zhì)上每個因式中各取一項的乘積,轉(zhuǎn)化為組合的知識,屬中檔題.15、【解析】
把平方利用數(shù)量積的運(yùn)算化簡即得解.【詳解】因為,,,所以,∴,∴,因為所以.故答案為:【點睛】本題主要考查平面向量的數(shù)量積的運(yùn)算法則,考查向量的夾角的計算,意在考查學(xué)生對這些知識的理解掌握水平.16、【解析】
由題意可知:,且,從而可得值.【詳解】由題意可知:∴,即,∴故答案為:【點睛】本題考查二項分布的實際應(yīng)用,考查分析問題解決問題的能力,考查計算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)當(dāng)時,,米時,發(fā)酵館的占地面積最?。划?dāng)時,時,發(fā)酵館的占地面積最?。划?dāng)時,米時,發(fā)酵館的占地面積最小.【解析】
(1)設(shè)米,總費(fèi)用為,解即可得解;(2)結(jié)合(1)可得占地面積結(jié)合導(dǎo)函數(shù)分類討論即可求得最值.【詳解】(1)由題意知:矩形面積米,設(shè)米,則米,由題意知:,得,設(shè)總費(fèi)用為,則,解得:,又,故,所以發(fā)酵池邊長的范圍是不小于15米,且不超過25米;(2)設(shè)發(fā)酵館的占地面積為由(1)知:,①時,,在上遞增,則,即米時,發(fā)酵館的占地面積最小;②時,,在上遞減,則,即米時,發(fā)酵館的占地面積最小;③時,時,,遞減;時,遞增,因此,即時,發(fā)酵館的占地面積最小;綜上所述:當(dāng)時,,米時,發(fā)酵館的占地面積最?。划?dāng)時,時,發(fā)酵館的占地面積最小;當(dāng)時,米時,發(fā)酵館的占地面積最小.【點睛】此題考查函數(shù)模型的應(yīng)用,關(guān)鍵在于根據(jù)題意恰當(dāng)?shù)亟⒛P停煤瘮?shù)性質(zhì)討論最值取得的情況.18、(1)(2)【解析】
(1)利用正弦定理的邊化角公式,結(jié)合兩角和的正弦公式,即可得出的值;(2)由題意得出,兩邊平方,化簡得出,根據(jù)三角形面積公式,即可得出結(jié)論.【詳解】(1)由正弦定理得即即在中,,所以(2)因為點是線段的中點,所以兩邊平方得由得整理得,解得或(舍)所以的面積【點睛】本題主要考查了正弦定理的邊化角公式,三角形的面積公式,屬于中檔題.19、(1)(2)【解析】
(1)設(shè)出直線的方程,再與拋物線聯(lián)立方程組,進(jìn)而求得點的坐標(biāo),結(jié)合弦長即可求得拋物線的方程;(2)設(shè)直線的方程,運(yùn)用韋達(dá)定理可得,可得之間的關(guān)系,再運(yùn)用進(jìn)行裂項,可求得,解不等式求得的值.【詳解】解:(1)設(shè)過拋物線焦點的直線方程為,與拋物線方程聯(lián)立得:,設(shè),所以,,,所以拋物線方程為(2)設(shè)直線方程為,,,,,,由得.【點睛】本題考查了直線與拋物線的關(guān)系,考查了韋達(dá)定理和運(yùn)用裂項法求數(shù)列的和,考查了運(yùn)算能力,屬于中檔題.20、(1);(2).【解析】
(1)根據(jù)題意得到GB是線段的中垂線,從而為定值,根據(jù)橢圓定義可知點G的軌跡是以M,N為焦點的橢圓,即可求出曲線C的方程;(2)聯(lián)立直線方程和橢圓方程,表示處的面積代入韋達(dá)定理化簡即可求范圍.【詳解】(1)為的中點,且是線段的中垂線,,又,∴點G的軌跡是以M,N為焦點的橢圓,設(shè)橢圓方程為(),則,,,所以曲線C的方程為.(2)設(shè)直線l:(),由消去y,可得.因為直線l總與橢圓C有且只有一個公共點,所以,.①又由可得;同理可得.由原點O到直線的距離為和,可得.②將①代入②得,當(dāng)時,,綜上,面積的取值范圍是.【點睛】此題考查了軌跡和直線與曲線相交問題,軌跡通過已知條件找到幾何關(guān)系從而判斷軌跡,直線與曲線相交一般聯(lián)立設(shè)而不求韋達(dá)定理進(jìn)行求解即可,屬于一般性題目.21、(1)有的把握認(rèn)為是否戴口罩出行的行為與年齡有關(guān).(2)【解析】
(1)根據(jù)列聯(lián)表和獨(dú)立性檢驗的公式計算出觀測
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能新能源汽車分期付款貸款協(xié)議書3篇
- 2025版?zhèn)€人房產(chǎn)買賣合同風(fēng)險評估范本2篇
- 2025版?zhèn)€人房產(chǎn)買賣合同附土地使用協(xié)議
- 2025版托育中心拖育綜合服務(wù)中心改造項目合同3篇
- 2025版數(shù)據(jù)錄入與云端數(shù)據(jù)同步維護(hù)服務(wù)協(xié)議3篇
- 2025-2030全球微電腦注藥泵行業(yè)調(diào)研及趨勢分析報告
- 2025年度個人對個人短期投資借款合同
- 2024年民法典知識競賽題庫及參考答案解析(共50題)
- 2025年度水電工程安全監(jiān)督與管理承包協(xié)議4篇
- 2025年度鋼材原材料采購質(zhì)量控制合同樣本
- 2024年蘇州工業(yè)園區(qū)服務(wù)外包職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測試歷年參考題庫含答案解析
- 人教版初中語文2022-2024年三年中考真題匯編-學(xué)生版-專題08 古詩詞名篇名句默寫
- 2024-2025學(xué)年人教版(2024)七年級(上)數(shù)學(xué)寒假作業(yè)(十二)
- 山西粵電能源有限公司招聘筆試沖刺題2025
- ESG表現(xiàn)對企業(yè)財務(wù)績效的影響研究
- 醫(yī)療行業(yè)軟件系統(tǒng)應(yīng)急預(yù)案
- 使用錯誤評估報告(可用性工程)模版
- 《精密板料矯平機(jī) 第2部分:技術(shù)規(guī)范》
- 2023-2024年同等學(xué)力經(jīng)濟(jì)學(xué)綜合真題及參考答案
- 農(nóng)村集體土地使用權(quán)轉(zhuǎn)讓協(xié)議
- 2024年高考全國甲卷英語試卷(含答案)
評論
0/150
提交評論