黑龍江省綏化市三校2024年高考數(shù)學五模試卷含解析_第1頁
黑龍江省綏化市三校2024年高考數(shù)學五模試卷含解析_第2頁
黑龍江省綏化市三校2024年高考數(shù)學五模試卷含解析_第3頁
黑龍江省綏化市三校2024年高考數(shù)學五模試卷含解析_第4頁
黑龍江省綏化市三校2024年高考數(shù)學五模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

黑龍江省綏化市三校2024年高考數(shù)學五模試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是函數(shù)的極大值點,則的取值范圍是A. B.C. D.2.《九章算術(shù)》勾股章有一“引葭赴岸”問題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問水深,葭各幾何?”,其意思是:有一個直徑為一丈的圓柱形水池,池中心生有一顆類似蘆葦?shù)闹参?,露出水面兩尺,若把它引向岸邊,正好與岸邊齊,問水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機取一點,則該點取自水下的概率為()A. B. C. D.3.函數(shù)與在上最多有n個交點,交點分別為(,……,n),則()A.7 B.8 C.9 D.104.()A. B. C.1 D.5.已知正方體的棱長為1,平面與此正方體相交.對于實數(shù),如果正方體的八個頂點中恰好有個點到平面的距離等于,那么下列結(jié)論中,一定正確的是A. B.C. D.6.函數(shù)在區(qū)間上的大致圖象如圖所示,則可能是()A.B.C.D.7.已知集合,,則A. B.C. D.8.已知集合,則()A. B. C. D.9.已知函數(shù),若,則下列不等關(guān)系正確的是()A. B.C. D.10.用一個平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形11.已知,,則的大小關(guān)系為()A. B. C. D.12.已知數(shù)列滿足,且成等比數(shù)列.若的前n項和為,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中,各項系數(shù)之和為,則展開式中的常數(shù)項為__________________.14.如圖,養(yǎng)殖公司欲在某湖邊依托互相垂直的湖岸線、圍成一個三角形養(yǎng)殖區(qū).為了便于管理,在線段之間有一觀察站點,到直線,的距離分別為8百米、1百米,則觀察點到點、距離之和的最小值為______________百米.15.已知函數(shù),在區(qū)間上隨機取一個數(shù),則使得≥0的概率為.16.在四面體中,分別是的中點.則下述結(jié)論:①四面體的體積為;②異面直線所成角的正弦值為;③四面體外接球的表面積為;④若用一個與直線垂直,且與四面體的每個面都相交的平面去截該四面體,由此得到一個多邊形截面,則該多邊形截面面積最大值為.其中正確的有_____.(填寫所有正確結(jié)論的編號)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知.(1)求不等式的解集;(2)記的最小值為,且正實數(shù)滿足.證明:.18.(12分)的內(nèi)角、、所對的邊長分別為、、,已知.(1)求的值;(2)若,點是線段的中點,,求的面積.19.(12分)設(shè)(1)證明:當時,;(2)當時,求整數(shù)的最大值.(參考數(shù)據(jù):,)20.(12分)如圖,直線y=2x-2與拋物線x2=2py(p>0)交于M1,M2兩點,直線y=p2與(1)求p的值;(2)設(shè)A是直線y=p2上一點,直線AM2交拋物線于另一點M3,直線M1M21.(12分)如圖,在直三棱柱中,,,D,E分別為AB,BC的中點.(1)證明:平面平面;(2)求點到平面的距離.22.(10分)已知橢圓:()的左、右頂點分別為、,焦距為2,點為橢圓上異于、的點,且直線和的斜率之積為.(1)求的方程;(2)設(shè)直線與軸的交點為,過坐標原點作交橢圓于點,試探究是否為定值,若是,求出該定值;若不是,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

方法一:令,則,,當,時,,單調(diào)遞減,∴時,,,且,∴,即在上單調(diào)遞增,時,,,且,∴,即在上單調(diào)遞減,∴是函數(shù)的極大值點,∴滿足題意;當時,存在使得,即,又在上單調(diào)遞減,∴時,,所以,這與是函數(shù)的極大值點矛盾.綜上,.故選B.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點,須在的左側(cè)附近,,即;在的右側(cè)附近,,即.易知,時,與相切于原點,所以根據(jù)與的圖象關(guān)系,可得,故選B.2、C【解析】

由題意知:,,設(shè),則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設(shè),則在中,列勾股方程得:,解得所以從該葭上隨機取一點,則該點取自水下的概率為故選C.【點睛】本題考查了幾何概型中的長度型,屬于基礎(chǔ)題.3、C【解析】

根據(jù)直線過定點,采用數(shù)形結(jié)合,可得最多交點個數(shù),然后利用對稱性,可得結(jié)果.【詳解】由題可知:直線過定點且在是關(guān)于對稱如圖通過圖像可知:直線與最多有9個交點同時點左、右邊各四個交點關(guān)于對稱所以故選:C【點睛】本題考查函數(shù)對稱性的應(yīng)用,數(shù)形結(jié)合,難點在于正確畫出圖像,同時掌握基礎(chǔ)函數(shù)的性質(zhì),屬難題.4、A【解析】

利用復(fù)數(shù)的乘方和除法法則將復(fù)數(shù)化為一般形式,結(jié)合復(fù)數(shù)的模長公式可求得結(jié)果.【詳解】,,因此,.故選:A.【點睛】本題考查復(fù)數(shù)模長的計算,同時也考查了復(fù)數(shù)的乘方和除法法則的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.5、B【解析】

此題畫出正方體模型即可快速判斷m的取值.【詳解】如圖(1)恰好有3個點到平面的距離為;如圖(2)恰好有4個點到平面的距離為;如圖(3)恰好有6個點到平面的距離為.所以本題答案為B.【點睛】本題以空間幾何體為載體考查點,面的位置關(guān)系,考查空間想象能力,考查了學生靈活應(yīng)用知識分析解決問題的能力和知識方法的遷移能力,屬于難題.6、B【解析】

根據(jù)特殊值及函數(shù)的單調(diào)性判斷即可;【詳解】解:當時,,無意義,故排除A;又,則,故排除D;對于C,當時,,所以不單調(diào),故排除C;故選:B【點睛】本題考查根據(jù)函數(shù)圖象選擇函數(shù)解析式,這類問題利用特殊值與排除法是最佳選擇,屬于基礎(chǔ)題.7、D【解析】

因為,,所以,,故選D.8、C【解析】

解不等式得出集合A,根據(jù)交集的定義寫出A∩B.【詳解】集合A={x|x2﹣2x﹣30}={x|﹣1x3},,故選C.【點睛】本題考查了解不等式與交集的運算問題,是基礎(chǔ)題.9、B【解析】

利用函數(shù)的單調(diào)性得到的大小關(guān)系,再利用不等式的性質(zhì),即可得答案.【詳解】∵在R上單調(diào)遞增,且,∴.∵的符號無法判斷,故與,與的大小不確定,對A,當時,,故A錯誤;對C,當時,,故C錯誤;對D,當時,,故D錯誤;對B,對,則,故B正確.故選:B.【點睛】本題考查分段函數(shù)的單調(diào)性、不等式性質(zhì)的運用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,屬于基礎(chǔ)題.10、C【解析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點:平面的基本性質(zhì)及推論.11、D【解析】

由指數(shù)函數(shù)的圖像與性質(zhì)易得最小,利用作差法,結(jié)合對數(shù)換底公式及基本不等式的性質(zhì)即可比較和的大小關(guān)系,進而得解.【詳解】根據(jù)指數(shù)函數(shù)的圖像與性質(zhì)可知,由對數(shù)函數(shù)的圖像與性質(zhì)可知,,所以最小;而由對數(shù)換底公式化簡可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.【點睛】本題考查了指數(shù)式與對數(shù)式的化簡變形,對數(shù)換底公式及基本不等式的簡單應(yīng)用,作差法比較大小,屬于中檔題.12、D【解析】

利用等比中項性質(zhì)可得等差數(shù)列的首項,進而求得,再利用二次函數(shù)的性質(zhì),可得當或時,取到最小值.【詳解】根據(jù)題意,可知為等差數(shù)列,公差,由成等比數(shù)列,可得,∴,解得.∴.根據(jù)單調(diào)性,可知當或時,取到最小值,最小值為.故選:D.【點睛】本題考查等差數(shù)列通項公式、等比中項性質(zhì)、等差數(shù)列前項和的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意當或時同時取到最值.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用展開式各項系數(shù)之和求得的值,由此寫出展開式的通項,令指數(shù)為零求得參數(shù)的值,代入通項計算即可得解.【詳解】的展開式各項系數(shù)和為,得,所以,的展開式通項為,令,得,因此,展開式中的常數(shù)項為.故答案為:.【點睛】本題考查二項展開式中常數(shù)項的計算,涉及二項展開式中各項系數(shù)和的計算,考查計算能力,屬于基礎(chǔ)題.14、【解析】

建系,將直線用方程表示出來,再用參數(shù)表示出線段的長度,最后利用導(dǎo)數(shù)來求函數(shù)最小值.【詳解】以為原點,所在直線分別作為軸,建立平面直角坐標系,則.設(shè)直線,即,則,所以,所以,,則,則,當時,,則單調(diào)遞減,當時,,則單調(diào)遞增,所以當時,最短,此時.故答案為:【點睛】本題考查導(dǎo)數(shù)的實際應(yīng)用,屬于中檔題.15、【解析】試題分析:可以得出,所以在區(qū)間上使的范圍為,所以使得≥0的概率為考點:本小題主要考查與長度有關(guān)的幾何概型的概率計算.點評:幾何概型適用于解決一切均勻分布的問題,包括“長度”、“角度”、“面積”、“體積”等,但要注意求概率時做比的上下“測度”要一致.16、①③④.【解析】

補圖成長方體,在長方體中利用割補法求四面體的體積,和外接球的表面積,以及異面直線的夾角,作出截面即可計算截面面積的最值.【詳解】根據(jù)四面體特征,可以補圖成長方體設(shè)其邊長為,,解得補成長,寬,高分別為的長方體,在長方體中:①四面體的體積為,故正確②異面直線所成角的正弦值等價于邊長為的矩形的對角線夾角正弦值,可得正弦值為,故錯;③四面體外接球就是長方體的外接球,半徑,其表面積為,故正確;④由于,故截面為平行四邊形,可得,設(shè)異面直線與所成的角為,則,算得,.故正確.故答案為:①③④.【點睛】此題考查根據(jù)幾何體求體積,外接球的表面積,異面直線夾角和截面面積最值,關(guān)鍵在于熟練掌握點線面位置關(guān)系的處理方法,補圖法作為解決體積和外接球問題的常用方法,平常需要積累常見幾何體的補圖方法.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2)見解析【解析】

(1)根據(jù),利用零點分段法解不等式,或作出函數(shù)的圖像,利用函數(shù)的圖像解不等式;(2)由(1)作出的函數(shù)圖像求出的最小值為,可知,代入中,然后給等式兩邊同乘以,再將寫成后,化簡變形,再用均值不等式可證明.【詳解】(1)解法一:1°時,,即,解得;2°時,,即,解得;3°時,,即,解得.綜上可得,不等式的解集為或.解法二:由作出圖象如下:由圖象可得不等式的解集為或.(2)由所以在上單調(diào)遞減,在上單調(diào)遞增,所以,正實數(shù)滿足,則,即,(當且僅當即時取等號)故,得證.【點睛】此題考查了絕對值不等式的解法,絕對值不等式的性質(zhì)和均值不等式的運用,考查了分類討論思想和轉(zhuǎn)化思想,屬于中檔題.18、(1)(2)【解析】

(1)利用正弦定理的邊化角公式,結(jié)合兩角和的正弦公式,即可得出的值;(2)由題意得出,兩邊平方,化簡得出,根據(jù)三角形面積公式,即可得出結(jié)論.【詳解】(1)由正弦定理得即即在中,,所以(2)因為點是線段的中點,所以兩邊平方得由得整理得,解得或(舍)所以的面積【點睛】本題主要考查了正弦定理的邊化角公式,三角形的面積公式,屬于中檔題.19、(1)證明見解析;(2).【解析】

(1)將代入函數(shù)解析式可得,構(gòu)造函數(shù),求得并令,由導(dǎo)函數(shù)符號判斷函數(shù)單調(diào)性并求得最大值,由即可證明恒成立,即不等式得證.(2)對函數(shù)求導(dǎo),變形后討論當時的函數(shù)單調(diào)情況:當時,可知滿足題意;將不等式化簡后構(gòu)造函數(shù),利用導(dǎo)函數(shù)求得極值點與函數(shù)的單調(diào)性,從而求得最小值為,分別依次代入檢驗的符號,即可確定整數(shù)的最大值;當時不滿足題意,因為求整數(shù)的最大值,所以時無需再討論.【詳解】(1)證明:當時代入可得,令,,則,令解得,當時,所以在單調(diào)遞增,當時,所以在單調(diào)遞減,所以,則,即成立.(2)函數(shù)則,若時,當時,,則在時單調(diào)遞減,所以,即當時成立;所以此時需滿足的整數(shù)解即可,將不等式化簡可得,令則令解得,當時,即在內(nèi)單調(diào)遞減,當時,即在內(nèi)單調(diào)遞增,所以當時取得最小值,則,,,所以此時滿足的整數(shù)的最大值為;當時,在時,此時,與題意矛盾,所以不成立.因為求整數(shù)的最大值,所以時無需再討論,綜上所述,當時,整數(shù)的最大值為.【點睛】本題考查了導(dǎo)數(shù)在證明不等式中的應(yīng)用,導(dǎo)數(shù)與函數(shù)單調(diào)性、極值、最值的關(guān)系和應(yīng)用,構(gòu)造函數(shù)法求最值,并判斷函數(shù)值法符號,綜合性強,屬于難題.20、(1)p=4;(2)OA?【解析】試題分析:(1)聯(lián)立直線的方程和拋物線的方程y=2x-2x2=2py,化簡寫出根與系數(shù)關(guān)系,由于直線y=p2平分∠M1FM2,所以kM1F+kM2F=0,代入點的坐標化簡得4-(2+p2)?x試題解析:(1)由y=2x-2x2=2py設(shè)M1(x1,因為直線y=p2平分∠M所以y1-p所以4-(2+p2)?x1+x(2)由(1)知拋物線方程為x2=8y,且x1+x設(shè)M3(x3,x328所以x2+x整理得:x2由B,M3,②式兩邊同乘x2得:x即:16x由①得:x2x3即:16(x2+所以O(shè)A?考點:直線與圓錐曲線的位置關(guān)系.【方法點晴】本題考查直線與拋物線的位置關(guān)系.閱讀題目后明顯發(fā)現(xiàn),所有的點都是由直線和拋物線相交或者直線與直線相交所得.故第

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論