版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
吉林省長春市榆樹市保壽鎮(zhèn)中學(xué)高一數(shù)學(xué)文聯(lián)考試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,已知a2=3,a6=11,則S7等于(
) A.13 B.35 C.49 D.63參考答案:C考點(diǎn):等差數(shù)列的前n項(xiàng)和.專題:等差數(shù)列與等比數(shù)列.分析:根據(jù)等差數(shù)列的性質(zhì)可知項(xiàng)數(shù)之和相等的兩項(xiàng)之和相等即a1+a7=a2+a6,求出a1+a7的值,然后利用等差數(shù)列的前n項(xiàng)和的公式表示出S7,將a1+a7的值代入即可求出.解答: 解:因?yàn)閍1+a7=a2+a6=3+11=14,所以故選C.點(diǎn)評(píng):此題考查學(xué)生掌握等差數(shù)列的性質(zhì)及前n項(xiàng)和的公式,是一道基礎(chǔ)題.2.已知,,則(
)A.
B.
C.或
D.或參考答案:B,則故選B.
3.對(duì)于函數(shù)y=f(x),如果存在區(qū)間[a,b],同時(shí)滿足下列條件:①f(x)在[a,b]內(nèi)是單調(diào)的;②當(dāng)定義域是[a,b]時(shí),f(x)的值域也是[a,b],則稱[a,b]是該函數(shù)的“對(duì)稱區(qū)間”。已知函數(shù)存在“對(duì)稱區(qū)間”,則實(shí)數(shù)m的取值范圍是A.(0,1)B.C.(0,2)D.(1,3)參考答案:A4.衣柜里的樟腦丸會(huì)隨著時(shí)間的揮發(fā)而體積縮小,剛放進(jìn)的新丸體積為a,經(jīng)過t天后體積V與天數(shù)t的關(guān)系式為:V=a?e﹣kt.若新丸經(jīng)過50天后,體積變?yōu)閍,則一個(gè)新丸體積變?yōu)閍需經(jīng)過的時(shí)間為()A.125天 B.100天 C.50天 D.75天參考答案:D【考點(diǎn)】3T:函數(shù)的值.【分析】由題意得V=a?e﹣50k=a,可令t天后體積變?yōu)閍,即有V=a?e﹣kt=a,由此能求出結(jié)果.【解答】解:由題意得V=a?e﹣50k=a,①可令t天后體積變?yōu)閍,即有V=a?e﹣kt=a,②由①可得e﹣50k=,③又②÷①得e﹣(t﹣50)k=,兩邊平方得e﹣(2t﹣100)k=,與③比較可得2t﹣100=50,解得t=75,即經(jīng)過75天后,體積變?yōu)閍.故選:D.5.如圖,邊長為2的正方形ABCD中,點(diǎn)E、F分別
是AB、BC的中點(diǎn),將△ADE,△EBF,△FCD分別沿DE,EF,F(xiàn)D折起,使得A、B、C三點(diǎn)重合于點(diǎn)A′,若四面體A′EFD的四個(gè)頂點(diǎn)在同一個(gè)球面上,則該球的表面積為()A.8π B.6π C.11π D.5π參考答案:B【考點(diǎn)】球的體積和表面積.【分析】把棱錐擴(kuò)展為正四棱柱,求出正四棱柱的外接球的半徑就是三棱錐的外接球的半徑,從而可求球的表面積.【解答】解:由題意可知△A′EF是等腰直角三角形,且A′D⊥平面A′EF.三棱錐的底面A′EF擴(kuò)展為邊長為1的正方形,然后擴(kuò)展為正四棱柱,三棱錐的外接球與正四棱柱的外接球是同一個(gè)球,正四棱柱的對(duì)角線的長度就是外接球的直徑,直徑為:=.∴球的半徑為,∴球的表面積為=6π.故選:B.6.已知點(diǎn),則線段的垂直平分線的方程是(
)A.
B.
C.
D.參考答案:B7.函數(shù)的定義域?yàn)椋?/p>
)A.
B.
C.
D.參考答案:B由2cosx﹣1≥0,得cosx,解得:.∴函數(shù)的定義域?yàn)?/p>
8.若點(diǎn),直線l過點(diǎn)且與線段AB相交,則l的斜率k的取值范圍是()A.或B.或C.D.參考答案:C試題分析:畫出三點(diǎn)坐標(biāo)可知,兩個(gè)邊界值為和,數(shù)形結(jié)合可知為。9.不等式的解集為(
)A.
B.C.
D.
參考答案:B略10.已知O是內(nèi)部一點(diǎn),則的面積為(
)
A.
B.
C.
D.參考答案:A二、填空題:本大題共7小題,每小題4分,共28分11.我國古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測(cè)雨”題:在下雨時(shí),用一個(gè)圓臺(tái)形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是寸.(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸)參考答案:3【考點(diǎn)】棱柱、棱錐、棱臺(tái)的體積.【分析】由題意得到盆中水面的半徑,利用圓臺(tái)的體積公式求出水的體積,用水的體積除以盆的上地面面積即可得到答案.【解答】解:如圖,由題意可知,天池盆上底面半徑為14寸,下底面半徑為6寸,高為18寸.因?yàn)榉e水深9寸,所以水面半徑為寸.則盆中水的體積為(立方寸).所以則平地降雨量等于(寸).故答案為3.12.如圖,在長方體ABCD—A1B1C1D1中,棱錐A1——ABCD的體積與長方體的體積之比為_______________.
參考答案:略13.已知等差數(shù)列的公差不為,且成等比數(shù)列,則
.參考答案:略14.設(shè)數(shù)集,,且都是集合的子集,如果把叫做集合的“長度”,那么集合的長度的最小值是
.參考答案:15.函數(shù)f(x)=(x﹣x2)的單調(diào)遞增區(qū)間是. 參考答案:[,1)【考點(diǎn)】復(fù)合函數(shù)的單調(diào)性. 【專題】函數(shù)的性質(zhì)及應(yīng)用. 【分析】令t=x﹣x2>0,求得函數(shù)的定義域?yàn)椋?,1),且f(x)=,本題即求函數(shù)t在(0,1)上的減區(qū)間. 再利用二次函數(shù)的性質(zhì)可得結(jié)論. 【解答】解:令t=x﹣x2>0,求得0<x<1,故函數(shù)的定義域?yàn)椋?,1),且f(x)=, 故本題即求函數(shù)t在(0,1)上的減區(qū)間. 再利用二次函數(shù)的性質(zhì)可得函數(shù)t在(0,1)上的減區(qū)間為[,1), 故答案為:[,1). 【點(diǎn)評(píng)】本題主要考查復(fù)合函數(shù)的單調(diào)性,對(duì)數(shù)函數(shù)、二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題. 16.函數(shù)f(x)=cos(x+)的圖象向右平移φ(φ>0)個(gè)單位,所得函數(shù)圖象關(guān)于y軸對(duì)稱,則φ的最小值為.參考答案:
【考點(diǎn)】函數(shù)y=Asin(ωx+φ)的圖象變換.【分析】函數(shù)f(x)=cos(x+)的圖象向右平移φ個(gè)單位所得圖象關(guān)于y軸對(duì)稱,可得出函數(shù)的形式變?yōu)榱藋=cos(φ+),k∈z,由余弦函數(shù)的對(duì)稱性此得出φ的表達(dá)式判斷出φ的最小正值得出答案.【解答】解:∵函數(shù)f(x)=cos(x+)的圖象向右平移φ個(gè)單位,所得圖象對(duì)應(yīng)的函數(shù)解析式為:y=cos(φ+)由于其圖象關(guān)于y軸對(duì)稱,∴φ+=kπ,k∈z,∴φ=﹣2kπ,k∈z,由φ>0,可得:當(dāng)k=0時(shí),φ的最小正值是.故答案為:【點(diǎn)評(píng)】本題考查函數(shù)y=Asin(ωx+φ)的圖象變換,解題的關(guān)鍵是熟練掌握、理解三角函數(shù)圖象的變換規(guī)律,由這些規(guī)律得到關(guān)于φ的方程,再根據(jù)所得出的方程判斷出φ的最小正值,本題考查圖象變換,題型新穎,題后注意總結(jié)此類題的做題規(guī)律,在近幾年的高考中,此類題出現(xiàn)頻率較高,應(yīng)多加重視.17.設(shè)奇函數(shù)的定義域?yàn)?,若?dāng)?shù)膱D象如右圖,則不等式≤0解集是______________.參考答案:略三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.已知函數(shù)(1)若關(guān)于x的不等式的解集為(-2,4),求m的值;(2)若對(duì)任意恒成立,求m的取值范圍.參考答案:(1);(2)【分析】(1)不等式可化為,而解集為,可利用韋達(dá)定理或直接代入即可得到答案;(2)法一:討論和時(shí),分離參數(shù)利用均值不等式即可得到取值范圍;法二:利用二次函數(shù)在上大于等于0恒成立,即可得到取值范圍.【詳解】(1)法一:不等式可化為,其解集為,由根與系數(shù)的關(guān)系可知,解得,經(jīng)檢驗(yàn)時(shí)滿足題意.法二:由題意知,原不等式所對(duì)應(yīng)的方程的兩個(gè)實(shí)數(shù)根為和4,將(或4)代入方程計(jì)算可得,經(jīng)檢驗(yàn)時(shí)滿足題意.(2)法一:由題意可知恒成立,①若,則恒成立,符合題意。②若,則恒成立,而,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以,即.故實(shí)數(shù)的取值范圍為.法二:二次函數(shù)的對(duì)稱軸為.①若,即,函數(shù)在上單調(diào)遞增,恒成立,故;②若,即,此時(shí)在上單調(diào)遞減,在上單調(diào)遞增,由得.故;③若,即,此時(shí)函數(shù)在上單調(diào)遞減,由得,與矛盾,故不存在.綜上所述,實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題主要考查一元二次不等式的性質(zhì),不等式恒成立中含參問題,意在考查學(xué)生的分析能力,計(jì)算能力及轉(zhuǎn)化能力,難度較大.19.已知函數(shù)f(x)對(duì)一切實(shí)數(shù)x,y都滿足f(x+y)=f(y)+(x+2y+1)x,且f(1)=0,
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)當(dāng)時(shí),f(x)+3<2x+a恒成立,求a的范圍.參考答案:略20.(本題8分)已知,,,求的取值范圍參考答案:略21.設(shè)A={x|x2﹣5x+4≤0},B={x|x2﹣2ax+a+2<0}(1)用區(qū)間表示A;
(2)若B?A,求實(shí)數(shù)a的取值范圍.參考答案:【考點(diǎn)】集合的包含關(guān)系判斷及應(yīng)用.【專題】計(jì)算題;集合.【分析】(1)化簡A={x|(x﹣1)(x﹣4)≤0}=[1,4],(2)設(shè)f(x)=x2﹣2ax+a+2,從而討論B是否是空集即可.【解答】解:(1)A={x|x2﹣5x+4≤0}={x|(x﹣1)(x﹣4)≤0}=[1,4],(2)設(shè)f(x)=x2﹣2ax+a+2,若B=?,則△=4a2﹣4(a+2)≤0,∴a2﹣a﹣2≤0,∴﹣1≤a≤2;若B≠?,則,解得,2<a≤;綜上所述,a∈[﹣1,];【點(diǎn)評(píng)】本題考查了集合的化簡與運(yùn)算及分類討論的思想應(yīng)用.22.若集合A={x|x>-2},B={x|x≤b,b∈R},試寫出:(1)A∪B=R的一個(gè)充要條
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024院子買賣合同范本(含裝修)3篇
- 2025年度智能農(nóng)田除草機(jī)械化服務(wù)合同4篇
- 2024自動(dòng)駕駛測(cè)試司機(jī)試驗(yàn)合同
- 2024起重機(jī)租賃合同:含特種設(shè)備檢測(cè)與認(rèn)證服務(wù)3篇
- 2025年度果樹觀光園果樹租賃經(jīng)營合同范本3篇
- 2024虛擬現(xiàn)實(shí)技術(shù)托管服務(wù)合同
- 2025年度彩鋼構(gòu)件回收與再利用合同3篇
- 2024版軟件開發(fā)項(xiàng)目分包協(xié)議3篇
- 2025年度商業(yè)地產(chǎn)租賃合同示范文本11篇
- 2025年度智慧城市建設(shè)承包經(jīng)營合同范本3篇
- 軟件項(xiàng)目應(yīng)急措施及方案
- 2025河北邯鄲經(jīng)開國控資產(chǎn)運(yùn)營管理限公司招聘專業(yè)技術(shù)人才5名高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024年民法典知識(shí)競(jìng)賽考試題庫及答案(共50題)
- 2025老年公寓合同管理制度
- 2024-2025學(xué)年人教版數(shù)學(xué)六年級(jí)上冊(cè) 期末綜合卷(含答案)
- 2024中國汽車后市場(chǎng)年度發(fā)展報(bào)告
- 鈑金設(shè)備操作培訓(xùn)
- 感染性腹瀉的護(hù)理查房
- 天津市部分區(qū)2023-2024學(xué)年高二上學(xué)期期末考試 物理 含解析
- 水利工程招標(biāo)文件樣本
- 第17課 西晉的短暫統(tǒng)一和北方各族的內(nèi)遷(說課稿)-2024-2025學(xué)年七年級(jí)歷史上冊(cè)素養(yǎng)提升說課稿(統(tǒng)編版2024)
評(píng)論
0/150
提交評(píng)論