遼寧省營(yíng)口市大石橋市金橋中學(xué)2023-2024學(xué)年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第1頁(yè)
遼寧省營(yíng)口市大石橋市金橋中學(xué)2023-2024學(xué)年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第2頁(yè)
遼寧省營(yíng)口市大石橋市金橋中學(xué)2023-2024學(xué)年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第3頁(yè)
遼寧省營(yíng)口市大石橋市金橋中學(xué)2023-2024學(xué)年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第4頁(yè)
遼寧省營(yíng)口市大石橋市金橋中學(xué)2023-2024學(xué)年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

遼寧省營(yíng)口市大石橋市金橋中學(xué)2023-2024學(xué)年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,為的直徑,為上兩點(diǎn),若,則的大小為().A.60° B.50° C.40° D.20°2.如圖所示,將矩形ABCD的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)既無(wú)縫隙又無(wú)重疊的四邊形EFGH,若EH=3,EF=4,那么線段AD與AB的比等于()A.25:24 B.16:15 C.5:4 D.4:33.一個(gè)布袋內(nèi)只裝有1個(gè)黑球和2個(gè)白球,這些球除顏色不同外其余都相同,隨機(jī)摸出一個(gè)球后放回?cái)噭?再隨機(jī)摸出一個(gè)球,則兩次摸出的球都是黑球的概率是()A. B. C. D.4.將拋物線y=x2向左平移2個(gè)單位,再向下平移5個(gè)單位,平移后所得新拋物線的表達(dá)式為()A.y=(x+2)2﹣5B.y=(x+2)2+5C.y=(x﹣2)2﹣5D.y=(x﹣2)2+55.如圖,AD,CE分別是△ABC的中線和角平分線.若AB=AC,∠CAD=20°,則∠ACE的度數(shù)是()A.20° B.35° C.40° D.70°6.如圖直線y=mx與雙曲線y=交于點(diǎn)A、B,過(guò)A作AM⊥x軸于M點(diǎn),連接BM,若S△AMB=2,則k的值是()A.1 B.2 C.3 D.47.下列圖標(biāo)中,是中心對(duì)稱圖形的是()A. B.C. D.8.如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2,OA=4,將直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到的直線l2剛好與⊙O相切于點(diǎn)C,則OC=()A.1 B.2 C.3 D.49.上周周末放學(xué),小華的媽媽來(lái)學(xué)校門(mén)口接他回家,小華離開(kāi)教室后不遠(yuǎn)便發(fā)現(xiàn)把文具盒遺忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并與班主任交流了一下周末計(jì)劃才離開(kāi),為了不讓媽媽久等,小華快步跑到學(xué)校門(mén)口,則小華離學(xué)校門(mén)口的距離y與時(shí)間t之間的函數(shù)關(guān)系的大致圖象是()A. B. C. D.10.將1、、、按如圖方式排列,若規(guī)定(m、n)表示第m排從左向右第n個(gè)數(shù),則(6,5)與(13,6)表示的兩數(shù)之積是()A. B.6 C. D.二、填空題(共7小題,每小題3分,滿分21分)11.為了求1+2+22+23+…+22016+22017的值,可令S=1+2+22+23+…+22016+22017,則2S=2+22+23+24+…+22017+22018,因此2S﹣S=22018﹣1,所以1+22+23+…+22017=22018﹣1.請(qǐng)你仿照以上方法計(jì)算1+5+52+53+…+52017的值是_____.12.已知線段AB=2cm,點(diǎn)C在線段AB上,且AC2=BC·AB,則AC的長(zhǎng)___________cm.13.如圖,點(diǎn)A為函數(shù)y=(x>0)圖象上一點(diǎn),連接OA,交函數(shù)y=(x>0)的圖象于點(diǎn)B,點(diǎn)C是x軸上一點(diǎn),且AO=AC,則△ABC的面積為_(kāi)_____.14.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以每秒cm的速度向終點(diǎn)B運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿BC方向以每秒lcm的速度向終點(diǎn)C運(yùn)動(dòng),將△PQC沿BC翻折,點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)P′,設(shè)Q點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒,若四邊形QP′CP為菱形,則t的值為_(kāi)____.15.如圖,AB為⊙0的弦,AB=6,點(diǎn)C是⊙0上的一個(gè)動(dòng)點(diǎn),且∠ACB=45°,若點(diǎn)M、N分別是AB、BC的中點(diǎn),則MN長(zhǎng)的最大值是______________.16.點(diǎn)(1,–2)關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱點(diǎn)坐標(biāo)是_____.17.一個(gè)不透明口袋里裝有形狀、大小都相同的2個(gè)紅球和4個(gè)黑球,從中任意摸出一個(gè)球恰好是紅球的概率是____.三、解答題(共7小題,滿分69分)18.(10分)我市某中學(xué)舉辦“網(wǎng)絡(luò)安全知識(shí)答題競(jìng)賽”,初、高中部根據(jù)初賽成績(jī)各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽,兩個(gè)隊(duì)各選出的5名選手的決賽成績(jī)?nèi)鐖D所示.平均分(分)中位數(shù)(分)眾數(shù)(分)方差(分2)初中部a85bs初中2高中部85c100160(1)根據(jù)圖示計(jì)算出a、b、c的值;結(jié)合兩隊(duì)成績(jī)的平均數(shù)和中位數(shù)進(jìn)行分析,哪個(gè)隊(duì)的決賽成績(jī)較好?計(jì)算初中代表隊(duì)決賽成績(jī)的方差s初中2,并判斷哪一個(gè)代表隊(duì)選手成績(jī)較為穩(wěn)定.19.(5分)如圖,在△ABC中,以AB為直徑的⊙O交BC于點(diǎn)D,交CA的延長(zhǎng)線于點(diǎn)E,過(guò)點(diǎn)D作DH⊥AC于點(diǎn)H,且DH是⊙O的切線,連接DE交AB于點(diǎn)F.(1)求證:DC=DE;(2)若AE=1,,求⊙O的半徑.20.(8分)如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD與過(guò)點(diǎn)C的切線垂直,垂足為點(diǎn)D,直線DC與AB的延長(zhǎng)線相交于點(diǎn)P,弦CE平分∠ACB,交AB點(diǎn)F,連接BE.(1)求證:AC平分∠DAB;(2)求證:PC=PF;(3)若tan∠ABC=,AB=14,求線段PC的長(zhǎng).21.(10分)已知是上一點(diǎn),.如圖①,過(guò)點(diǎn)作的切線,與的延長(zhǎng)線交于點(diǎn),求的大小及的長(zhǎng);如圖②,為上一點(diǎn),延長(zhǎng)線與交于點(diǎn),若,求的大小及的長(zhǎng).22.(10分)計(jì)算:sin30°?tan60°+..23.(12分)如圖,已知AB為⊙O的直徑,AC是⊙O的弦,D是弧BC的中點(diǎn),過(guò)點(diǎn)D作⊙O的切線,分別交AC、AB的延長(zhǎng)線于點(diǎn)E和點(diǎn)F,連接CD、BD.(1)求證:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的長(zhǎng).24.(14分)如圖,已知拋物線經(jīng)過(guò)原點(diǎn)o和x軸上一點(diǎn)A(4,0),拋物線頂點(diǎn)為E,它的對(duì)稱軸與x軸交于點(diǎn)D.直線y=﹣2x﹣1經(jīng)過(guò)拋物線上一點(diǎn)B(﹣2,m)且與y軸交于點(diǎn)C,與拋物線的對(duì)稱軸交于點(diǎn)F.(1)求m的值及該拋物線對(duì)應(yīng)的解析式;(2)P(x,y)是拋物線上的一點(diǎn),若S△ADP=S△ADC,求出所有符合條件的點(diǎn)P的坐標(biāo);(3)點(diǎn)Q是平面內(nèi)任意一點(diǎn),點(diǎn)M從點(diǎn)F出發(fā),沿對(duì)稱軸向上以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),設(shè)點(diǎn)M的運(yùn)動(dòng)時(shí)間為t秒,是否能使以Q、A、E、M四點(diǎn)為頂點(diǎn)的四邊形是菱形.若能,請(qǐng)直接寫(xiě)出點(diǎn)M的運(yùn)動(dòng)時(shí)間t的值;若不能,請(qǐng)說(shuō)明理由.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、B【解析】

根據(jù)題意連接AD,再根據(jù)同弧的圓周角相等,即可計(jì)算的的大小.【詳解】解:連接,∵為的直徑,∴.∵,∴,∴.故選:B.【點(diǎn)睛】本題主要考查圓弧的性質(zhì),同弧的圓周角相等,這是考試的重點(diǎn),應(yīng)當(dāng)熟練掌握.2、A【解析】

先根據(jù)圖形翻折的性質(zhì)可得到四邊形EFGH是矩形,再根據(jù)全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面積公式即可解答.【詳解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四邊形EFGH的其它內(nèi)角都是90°,∴四邊形EFGH是矩形,∴EH=FG(矩形的對(duì)邊相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代換),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根據(jù)勾股定理得HF==5,又∵HE?EF=HF?EM,∴EM=,又∵AE=EM=EB(折疊后A、B都落在M點(diǎn)上),∴AB=2EM=,∴AD:AB=5:==25:1.故選A【點(diǎn)睛】本題考查的是圖形的翻折變換,解題過(guò)程中應(yīng)注意折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,根據(jù)軸對(duì)稱的性質(zhì),折疊前后圖形的形狀和大小不變,折疊以后的圖形與原圖形全等.3、D【解析】試題分析:列表如下

白1

白2

(黑,黑)

(白1,黑)

(白2,黑)

白1

(黑,白1)

(白1,白1)

(白2,白1)

白2

(黑,白2)

(白1,白2)

(白2,白2)

由表格可知,隨機(jī)摸出一個(gè)球后放回?cái)噭?,再隨機(jī)摸出一個(gè)球所以的結(jié)果有9種,兩次摸出的球都是黑球的結(jié)果有1種,所以兩次摸出的球都是黑球的概率是.故答案選D.考點(diǎn):用列表法求概率.4、A【解析】

直接根據(jù)“上加下減,左加右減”的原則進(jìn)行解答即可.【詳解】拋物線y=x2的頂點(diǎn)坐標(biāo)為(0,0),先向左平移2個(gè)單位再向下平移1個(gè)單位后的拋物線的頂點(diǎn)坐標(biāo)為(﹣2,﹣1),所以,平移后的拋物線的解析式為y=(x+2)2﹣1.故選:A.【點(diǎn)睛】本題考查了二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答本題的關(guān)鍵.5、B【解析】

先根據(jù)等腰三角形的性質(zhì)以及三角形內(nèi)角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分線定義即可得出∠ACE=∠ACB=35°.【詳解】∵AD是△ABC的中線,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分線,∴∠ACE=∠ACB=35°.故選B.【點(diǎn)睛】本題考查了等腰三角形的兩個(gè)底角相等的性質(zhì),等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合的性質(zhì),三角形內(nèi)角和定理以及角平分線定義,求出∠ACB=70°是解題的關(guān)鍵.6、B【解析】

此題可根據(jù)反比例函數(shù)圖象的對(duì)稱性得到A、B兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,再由S△ABM=1S△AOM并結(jié)合反比例函數(shù)系數(shù)k的幾何意義得到k的值.【詳解】根據(jù)雙曲線的對(duì)稱性可得:OA=OB,則S△ABM=1S△AOM=1,S△AOM=|k|=1,則k=±1.又由于反比例函數(shù)圖象位于一三象限,k>0,所以k=1.故選B.【點(diǎn)睛】本題主要考查了反比例函數(shù)y=中k的幾何意義,即過(guò)雙曲線上任意一點(diǎn)引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)??疾榈囊粋€(gè)知識(shí)點(diǎn).7、B【解析】

根據(jù)中心對(duì)稱圖形的概念對(duì)各選項(xiàng)分析判斷即可得解.【詳解】解:A、不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;B、是中心對(duì)稱圖形,故本選項(xiàng)正確;C、不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;D、不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤.故選B.【點(diǎn)睛】本題考查了中心對(duì)稱圖形的概念:中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后與原圖重合.8、B【解析】

先利用三角函數(shù)計(jì)算出∠OAB=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠CAB=30°,根據(jù)切線的性質(zhì)得OC⊥AC,從而得到∠OAC=30°,然后根據(jù)含30度的直角三角形三邊的關(guān)系可得到OC的長(zhǎng).【詳解】解:在Rt△ABO中,sin∠OAB===,∴∠OAB=60°,∵直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到的直線l1剛好與⊙O相切于點(diǎn)C,∴∠CAB=30°,OC⊥AC,∴∠OAC=60°﹣30°=30°,在Rt△OAC中,OC=OA=1.故選B.【點(diǎn)睛】本題考查了直線與圓的位置關(guān)系:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d,則直線l和⊙O相交?d<r;直線l和⊙O相切?d=r;直線l和⊙O相離?d>r.也考查了旋轉(zhuǎn)的性質(zhì).9、B【解析】分析:根據(jù)題意出教室,離門(mén)口近,返回教室離門(mén)口遠(yuǎn),在教室內(nèi)距離不變,速快跑距離變化快,可得答案.詳解:根據(jù)題意得,函數(shù)圖象是距離先變短,再變長(zhǎng),在教室內(nèi)沒(méi)變化,最后迅速變短,B符合題意;

故選B.點(diǎn)睛:本題考查了函數(shù)圖象,根據(jù)距離的變化描述函數(shù)是解題關(guān)鍵.10、B【解析】

根據(jù)數(shù)的排列方法可知,第一排:1個(gè)數(shù),第二排2個(gè)數(shù).第三排3個(gè)數(shù),第四排4個(gè)數(shù),…第m-1排有(m-1)個(gè)數(shù),從第一排到(m-1)排共有:1+2+3+4+…+(m-1)個(gè)數(shù),根據(jù)數(shù)的排列方法,每四個(gè)數(shù)一個(gè)輪回,根據(jù)題目意思找出第m排第n個(gè)數(shù)到底是哪個(gè)數(shù)后再計(jì)算.【詳解】第一排1個(gè)數(shù),第二排2個(gè)數(shù).第三排3個(gè)數(shù),第四排4個(gè)數(shù),…第m-1排有(m-1)個(gè)數(shù),從第一排到(m-1)排共有:1+2+3+4+…+(m-1)個(gè)數(shù),根據(jù)數(shù)的排列方法,每四個(gè)數(shù)一個(gè)輪回,由此可知:(1,5)表示第1排從左向右第5個(gè)數(shù)是,(13,1)表示第13排從左向右第1個(gè)數(shù),可以看出奇數(shù)排最中間的一個(gè)數(shù)都是1,第13排是奇數(shù)排,最中間的也就是這排的第7個(gè)數(shù)是1,那么第1個(gè)就是,則(1,5)與(13,1)表示的兩數(shù)之積是1.故選B.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

根據(jù)上面的方法,可以令S=1+5+52+53+…+52017,則5S=5+52+53+…+52012+52018,再相減算出S的值即可.【詳解】解:令S=1+5+52+53+…+52017,則5S=5+52+53+…+52012+52018,5S﹣S=﹣1+52018,4S=52018﹣1,則S=,故答案為:.【點(diǎn)睛】此題參照例子,采用類比的方法就可以解決,注意這里由于都是5的次方,所以要用5S來(lái)達(dá)到抵消的目的.12、【解析】

設(shè)AC=x,則BC=2-x,根據(jù)AC2=BC·AB列方程求解即可.【詳解】解:設(shè)AC=x,則BC=2-x,根據(jù)AC2=BC·AB可得x2=2(2-x),解得:x=或(舍去).故答案為.【點(diǎn)睛】本題考查了黃金分割的應(yīng)用,關(guān)鍵是明確黃金分割所涉及的線段的比.13、6.【解析】

作輔助線,根據(jù)反比例函數(shù)關(guān)系式得:S△AOD=,S△BOE=,再證明△BOE∽△AOD,由性質(zhì)得OB與OA的比,由同高兩三角形面積的比等于對(duì)應(yīng)底邊的比可以得出結(jié)論.【詳解】如圖,分別作BE⊥x軸,AD⊥x軸,垂足分別為點(diǎn)E、D,∴BE∥AD,

∴△BOE∽△AOD,

∴,

∵OA=AC,

∴OD=DC,

∴S△AOD=S△ADC=S△AOC,

∵點(diǎn)A為函數(shù)y=(x>0)的圖象上一點(diǎn),

∴S△AOD=,

同理得:S△BOE=,

∴,

∴,

∴,

∴,

∴,

故答案為6.14、1【解析】作PD⊥BC于D,PE⊥AC于E,如圖,AP=t,BQ=tcm,(0≤t<6)∵∠C=90°,AC=BC=6cm,∴△ABC為直角三角形,∴∠A=∠B=45°,∴△APE和△PBD為等腰直角三角形,∴PE=AE=AP=tcm,BD=PD,∴CE=AC﹣AE=(6﹣t)cm,∵四邊形PECD為矩形,∴PD=EC=(6﹣t)cm,∴BD=(6﹣t)cm,∴QD=BD﹣BQ=(6﹣1t)cm,在Rt△PCE中,PC1=PE1+CE1=t1+(6﹣t)1,在Rt△PDQ中,PQ1=PD1+DQ1=(6﹣t)1+(6﹣1t)1,∵四邊形QPCP′為菱形,∴PQ=PC,∴t1+(6﹣t)1=(6﹣t)1+(6﹣1t)1,∴t1=1,t1=6(舍去),∴t的值為1.故答案為1.【點(diǎn)睛】

此題主要考查了菱形的性質(zhì),勾股定理,關(guān)鍵是要熟記定理的內(nèi)容并會(huì)應(yīng)用.15、3【解析】

根據(jù)中位線定理得到MN的最大時(shí),AC最大,當(dāng)AC最大時(shí)是直徑,從而求得直徑后就可以求得最大值.【詳解】解:因?yàn)辄c(diǎn)M、N分別是AB、BC的中點(diǎn),由三角形的中位線可知:MN=AC,所以當(dāng)AC最大為直徑時(shí),MN最大.這時(shí)∠B=90°又因?yàn)椤螦CB=45°,AB=6解得AC=6MN長(zhǎng)的最大值是3.故答案為:3.【點(diǎn)睛】本題考查了三角形的中位線定理、等腰直角三角形的性質(zhì)及圓周角定理,解題的關(guān)鍵是了解當(dāng)什么時(shí)候MN的值最大,難度不大.16、(-1,2)【解析】

根據(jù)兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱時(shí),它們的坐標(biāo)符號(hào)相反可得答案.【詳解】A(1,-2)關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)的坐標(biāo)是(-1,2),

故答案為:(-1,2).【點(diǎn)睛】此題主要考查了關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo),關(guān)鍵是掌握點(diǎn)的坐標(biāo)的變化規(guī)律.17、.【解析】

根據(jù)隨機(jī)事件概率大小的求法,找準(zhǔn)兩點(diǎn):①符合條件的情況數(shù)目;②全部情況的總數(shù).二者的比值就是其發(fā)生的概率的大?。驹斀狻俊咭粋€(gè)不透明口袋里裝有形狀、大小都相同的2個(gè)紅球和4個(gè)黑球,∴從中任意摸出一個(gè)球恰好是紅球的概率為:,故答案為.【點(diǎn)睛】本題考查了概率公式的應(yīng)用.注意概率=所求情況數(shù)與總情況數(shù)之比.三、解答題(共7小題,滿分69分)18、(1)85,85,80;(2)初中部決賽成績(jī)較好;(3)初中代表隊(duì)選手成績(jī)比較穩(wěn)定.【解析】

分析:(1)根據(jù)成績(jī)表,結(jié)合平均數(shù)、眾數(shù)、中位數(shù)的計(jì)算方法進(jìn)行解答;(2)比較初中部、高中部的平均數(shù)和中位數(shù),結(jié)合比較結(jié)果得出結(jié)論;(3)利用方差的計(jì)算公式,求出初中部的方差,結(jié)合方差的意義判斷哪個(gè)代表隊(duì)選手的成績(jī)較為穩(wěn)定.【詳解】詳解:(1)初中5名選手的平均分,眾數(shù)b=85,高中5名選手的成績(jī)是:70,75,80,100,100,故中位數(shù)c=80;(2)由表格可知初中部與高中部的平均分相同,初中部的中位數(shù)高,故初中部決賽成績(jī)較好;(3)=70,∵,∴初中代表隊(duì)選手成績(jī)比較穩(wěn)定.【點(diǎn)睛】本題是一道有關(guān)條形統(tǒng)計(jì)圖、平均數(shù)、眾數(shù)、中位數(shù)、方差的統(tǒng)計(jì)類題目,掌握平均數(shù)、眾數(shù)、中位數(shù)、方差的概念及計(jì)算方法是解題的關(guān)鍵.19、(1)見(jiàn)解析;(2).【解析】

(1)連接OD,由DH⊥AC,DH是⊙O的切線,然后由平行線的判定與性質(zhì)可證∠C=∠ODB,由圓周角定理可得∠OBD=∠DEC,進(jìn)而∠C=∠DEC,可證結(jié)論成立;(2)證明△OFD∽△AFE,根據(jù)相似三角形的性質(zhì)即可求出圓的半徑.【詳解】(1)證明:連接OD,由題意得:DH⊥AC,由且DH是⊙O的切線,∠ODH=∠DHA=90°,∴∠ODH=∠DHA=90°,∴OD∥CA,∴∠C=∠ODB,∵OD=OB,∴∠OBD=∠ODB,∴∠OBD=∠C,∵∠OBD=∠DEC,∴∠C=∠DEC,∴DC=DE;(2)解:由(1)可知:OD∥AC,∴∠ODF=∠AEF,∵∠OFD=∠AFE,∴△OFD∽△AFE,∴,∵AE=1,∴OD=,∴⊙O的半徑為.【點(diǎn)睛】本題考查了切線的性質(zhì),平行線的判定與性質(zhì),等腰三角形的性質(zhì)與判定,圓周角定理的推論,相似三角形的判定與性質(zhì),難度中等,熟練掌握各知識(shí)點(diǎn)是解答本題的關(guān)鍵.20、(1)(2)證明見(jiàn)解析;(3)1.【解析】

(1)由PD切⊙O于點(diǎn)C,AD與過(guò)點(diǎn)C的切線垂直,易證得OC∥AD,繼而證得AC平分∠DAB;

(2)由條件可得∠CAO=∠PCB,結(jié)合條件可得∠PCF=∠PFC,即可證得PC=PF;

(3)易證△PAC∽△PCB,由相似三角形的性質(zhì)可得到,又因?yàn)閠an∠ABC=,所以可得=,進(jìn)而可得到=,設(shè)PC=4k,PB=3k,則在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,進(jìn)而可建立關(guān)于k的方程,解方程求出k的值即可求出PC的長(zhǎng).【詳解】(1)證明:∵PD切⊙O于點(diǎn)C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠ACO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)證明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB為⊙O的直徑,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴,設(shè)PC=4k,PB=3k,則在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6(k=0不合題意,舍去).∴PC=4k=4×6=1.【點(diǎn)睛】此題考查了和圓有關(guān)的綜合性題目,用到的知識(shí)點(diǎn)有:切線的性質(zhì)、相似三角形的判定與性質(zhì)、垂徑定理、圓周角定理、勾股定理以及等腰三角形的判定與性質(zhì).21、(Ⅰ),PA=4;(Ⅱ),【解析】

(Ⅰ)易得△OAC是等邊三角形即∠AOC=60°,又由PC是○O的切線故PC⊥OC,即∠OCP=90°可得∠P的度數(shù),由OC=4可得PA的長(zhǎng)度(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,易得∠APC=45°;過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,易得AD=AO=CO,在Rt△DOC中易得CD的長(zhǎng),即可求解【詳解】解:(Ⅰ)∵AB是○O的直徑,∴OA是○O的半徑.∵∠OAC=60°,OA=OC,∴△OAC是等邊三角形.∴∠AOC=60°.∵PC是○O的切線,OC為○O的半徑,∴PC⊥OC,即∠OCP=90°∴∠P=30°.∴PO=2CO=8.∴PA=PO-AO=PO-CO=4.(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,∴∠AOC=∠ACO=∠OAC=60°∴∠AQC=30°.∵AQ=CQ,∴∠ACQ=∠QAC=75°∴∠ACQ-∠ACO=∠QAC-∠OAC=15°即∠QCO=∠QAO=15°.∴∠APC=∠AQC+∠QAO=45°.如圖②,過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D.∵△OAC是等邊三角形,CD⊥AB于點(diǎn)D,∴∠DCO=30°,AD=AO=CO=2.∵∠APC=45°,∴∠DCQ=∠APC=45°∴PD=CD在Rt△DOC中,OC=4,∠DCO=30°,∴OD=2,∴CD=2∴PD=CD=2∴AP=AD+DP=2+2【點(diǎn)睛】此題主要考查圓的綜合應(yīng)用22、【解析】試題分析:把相關(guān)的特殊三角形函數(shù)值代入進(jìn)行計(jì)算即可.試題解析:原式=.23、(1)見(jiàn)解析;(2)1【解析】

(1)連接AD,如圖,利用圓周角定理得∠

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論