四川資陽(yáng)中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第1頁(yè)
四川資陽(yáng)中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第2頁(yè)
四川資陽(yáng)中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第3頁(yè)
四川資陽(yáng)中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第4頁(yè)
四川資陽(yáng)中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

四川資陽(yáng)中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如圖,隨機(jī)地在圖中撒一把豆子,則豆子落到陰影部分的概率是()A.12 B.34 C.12.讀下面的程序框圖,若輸入的值為-5,則輸出的結(jié)果是()A.-1 B.0 C.1 D.23.已知數(shù)列是各項(xiàng)均為正數(shù)且公比不等于的等比數(shù)列.對(duì)于函數(shù),若數(shù)列為等差數(shù)列,則稱函數(shù)為“保比差數(shù)列函數(shù)”.現(xiàn)有定義在上的如下函數(shù):①;②;③;④,則為“保比差數(shù)列函數(shù)”的所有序號(hào)為()A.①② B.③④ C.①②④ D.②③④4.如圖所示,在中,點(diǎn)D是邊的中點(diǎn),則向量()A. B.C. D.5.已知等差數(shù)列的前項(xiàng)和,若,則()A.25 B.39 C.45 D.546.已知兩條平行直線和之間的距離等于,則實(shí)數(shù)的值為()A. B. C.或 D.7.若數(shù)列對(duì)任意滿足,下面給出關(guān)于數(shù)列的四個(gè)命題:①可以是等差數(shù)列,②可以是等比數(shù)列;③可以既是等差又是等比數(shù)列;④可以既不是等差又不是等比數(shù)列;則上述命題中,正確的個(gè)數(shù)為()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)8.圓與圓的位置關(guān)系是()A.相切 B.內(nèi)含 C.相離 D.相交9.已知數(shù)列滿足,則()A. B. C. D.10.已知直線的傾斜角為,在軸上的截距為2,則此直線方程為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在正方體中,是棱的中點(diǎn),則異面直線與所成角的余弦值為__________.12.設(shè),用,表示所有形如的正整數(shù)集合,其中且,為集合中的所有元素之和,則的通項(xiàng)公式為_______13.如圖,矩形中,,,是的中點(diǎn),將沿折起,使折起后平面平面,則異面直線和所成的角的余弦值為__________.14.終邊經(jīng)過(guò)點(diǎn),則_____________15.?dāng)?shù)列滿足:,,則______.16.如圖,海岸線上有相距海里的兩座燈塔A,B,燈塔B位于燈塔A的正南方向.海上停泊著兩艘輪船,甲船位于燈塔A的北偏西,與A相距海里的D處;乙船位于燈塔B的北偏西方向,與B相距海里的C處,此時(shí)乙船與燈塔A之間的距離為海里,兩艘輪船之間的距離為海里.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.如圖,四邊形是平行四邊形,平面平面,,,,,,,為的中點(diǎn).(1)求證:平面;(2)求證:平面平面.18.已知的內(nèi)角所對(duì)的邊分別為,且,.(1)若,求角的值;(2)若,求的值.19.在中,分別是角的對(duì)邊,.(1)求的值;(2)若的面積,,求的值.20.已知數(shù)列滿足,,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.21.在中,、、分別是內(nèi)角、、的對(duì)邊,且.(1)求角的大小;(2)若,的面積為,求的周長(zhǎng).

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

求出陰影部分的面積,然后與圓面積作比值即得.【詳解】圓被8等分,其中陰影部分有3分,因此所求概率為P=3故選D.【點(diǎn)睛】本題考查幾何概型,屬于基礎(chǔ)題.2、A【解析】

直接模擬程序框圖運(yùn)行,即可得出結(jié)論.【詳解】模擬程序框圖的運(yùn)行過(guò)程如下:輸入,進(jìn)入判斷結(jié)構(gòu),則,,輸出,故選:A.【點(diǎn)睛】本題主要考查程序框圖,一般求輸出結(jié)果時(shí),常模擬程序運(yùn)行,列表求解.3、C【解析】

①,為“保比差數(shù)列函數(shù)”;②,為“保比差數(shù)列函數(shù)”;③不是定值,不是“保比差數(shù)列函數(shù)”;④,是“保比差數(shù)列函數(shù)”,故選C.考點(diǎn):等差數(shù)列的判定及對(duì)數(shù)運(yùn)算公式點(diǎn)評(píng):數(shù)列,若有是定值常數(shù),則是等差數(shù)列4、D【解析】

根據(jù)向量線性運(yùn)算法則可求得結(jié)果.【詳解】為中點(diǎn)本題正確選項(xiàng):【點(diǎn)睛】本題考查根據(jù)向量線性運(yùn)算,用基底表示向量的問(wèn)題,屬于常考題型.5、A【解析】

設(shè)等差數(shù)列的公差為,從而根據(jù),即可求出,這樣根據(jù)等差數(shù)列的前項(xiàng)和公式即可求出.【詳解】解:設(shè)等差數(shù)列的公差為,則由,得:,,,故選:A.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式和等差數(shù)列的前項(xiàng)和公式,屬于基礎(chǔ)題.6、C【解析】

利用兩條平行線之間的距離公式可求的值.【詳解】?jī)蓷l平行線之間的距離為,故或,故選C.【點(diǎn)睛】一般地,平行線和之間的距離為,應(yīng)用該公式時(shí)注意前面的系數(shù)要相等.7、C【解析】

由已知可得an﹣an﹣1=2,或an=2an﹣1,結(jié)合等差數(shù)列和等比數(shù)列的定義,可得答案.【詳解】∵數(shù)列{an}對(duì)任意n≥2(n∈N)滿足(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,∴an﹣an﹣1=2,或an=2an﹣1,∴①{an}可以是公差為2的等差數(shù)列,正確;②{an}可以是公比為2的等比數(shù)列,正確;③若{an}既是等差又是等比數(shù)列,即此時(shí)公差為0,公比為1,由①②得,③錯(cuò)誤;④由(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,an﹣an﹣1=2或an=2an﹣1,當(dāng)數(shù)列為:1,3,6,8,16……得{an}既不是等差也不是等比數(shù)列,故④正確;故選C.【點(diǎn)睛】本題以命題的真假判斷與應(yīng)用為載體,考查了等差,等比數(shù)列的相關(guān)內(nèi)容,屬于中檔題.8、D【解析】

寫出兩圓的圓心,根據(jù)兩點(diǎn)間距離公式求得兩圓心的距離,發(fā)現(xiàn),所以兩圓相交。比較三者之間大小判斷位置關(guān)系?!驹斀狻?jī)蓤A的圓心分別為:,,半徑分別為:,,兩圓心距為:,所以,兩圓相交,選D?!军c(diǎn)睛】通過(guò)比較圓心距和半徑和與半徑差直接的關(guān)系判斷,即比較三者之間大小。9、B【解析】

分別令,求得不等式,由此證得成立.【詳解】當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,所以,所以,故選B.【點(diǎn)睛】本小題主要考查根據(jù)數(shù)列遞推關(guān)系判斷項(xiàng)的大小關(guān)系,屬于基礎(chǔ)題.10、D【解析】

由題意可得直線的斜率和截距,由斜截式可得答案.【詳解】解:∵直線的傾斜角為45°,∴直線的斜率為k=tan45°=1,由斜截式可得方程為:y=x+2,故選:D.【點(diǎn)睛】本題考查直線的斜截式方程,屬基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

假設(shè)正方體棱長(zhǎng),根據(jù)//,得到異面直線與所成角,計(jì)算,可得結(jié)果.【詳解】假設(shè)正方體棱長(zhǎng)為1,因?yàn)?/,所以異面直線與所成角即與所成角則角為如圖,所以故答案為:【點(diǎn)睛】本題考查異面直線所成的角,屬基礎(chǔ)題.12、【解析】

把集合中每個(gè)數(shù)都表示為2的0到的指數(shù)冪相加的形式,并確定,,,,每個(gè)數(shù)都出現(xiàn)次,于是利用等比數(shù)列求和公式計(jì)算,可求出數(shù)列的通項(xiàng)公式.【詳解】由題意可知,,,,是0,1,2,,的一個(gè)排列,且集合中共有個(gè)數(shù),若把集合中每個(gè)數(shù)表示為的形式,則,,,,每個(gè)數(shù)都出現(xiàn)次,因此,,故答案為:.【點(diǎn)睛】本題以數(shù)列新定義為問(wèn)題背景,考查等比數(shù)列的求和公式,考查學(xué)生的理解能力與計(jì)算能力,屬于中等題.13、【解析】

取中點(diǎn)為,中點(diǎn)為,連接,則異面直線和所成角為.在中,利用邊長(zhǎng)關(guān)系得到余弦值.【詳解】由題意,取中點(diǎn),連接,則,可得直線和所成角的平面角為,(如圖)過(guò)作垂直于,平面⊥平面,,平面,,且,結(jié)合平面圖形可得:,,,又=,∴=,∴在中,=,∴△DFC是直角三角形且,可得.【點(diǎn)睛】本題考查了異面直線的夾角,意在考查學(xué)生的計(jì)算能力和空間想象能力.14、【解析】

根據(jù)正弦值的定義,求得正弦值.【詳解】依題意.故答案為:【點(diǎn)睛】本小題主要考查根據(jù)角的終邊上一點(diǎn)的坐標(biāo)求正弦值,屬于基礎(chǔ)題.15、【解析】

可通過(guò)賦值法依次進(jìn)行推導(dǎo),找出數(shù)列的周期,進(jìn)而求解【詳解】由,,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),,當(dāng)故數(shù)列從開始,以3為周期故故答案為:【點(diǎn)睛】本題考查數(shù)列的遞推公式,能根據(jù)遞推公式找出數(shù)列的規(guī)律是解題的關(guān)鍵,屬于中檔題16、5,【解析】

為等邊三角形,所以算出,,再在中根據(jù)余弦定理易得CD的長(zhǎng).【詳解】因?yàn)闉榈冗吶切?,所以.在中根?jù)余弦定理解得.【點(diǎn)睛】此題考查余弦定理的實(shí)際應(yīng)用,關(guān)鍵點(diǎn)通過(guò)已知條件轉(zhuǎn)換為數(shù)學(xué)模型再通過(guò)余弦定理求解即可,屬于較易題目.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見解析(2)見解析【解析】

(1)取中點(diǎn),連接,,利用三角形中位線定理,結(jié)合已知,可以證明出四邊形為平行四邊形,利用平行四邊形的性質(zhì)和線面平行的判定定理可以證明出平面;(2)在中,利用余弦定理可以求出的值,利用勾股定理的逆定理可以得,由平面平面,利用面面垂直的性質(zhì)定理,可以得到平面,最后利用面面垂直的判斷定理可以證明出平面平面.【詳解】(1)取中點(diǎn),連接,,在中,因?yàn)槭侵悬c(diǎn)所以且又因?yàn)?,,所以且,即四邊形為平行四邊形,所以,又平面,平面平?(2)在中,,,由余弦定理得,進(jìn)而由勾股定理的逆定理得又因?yàn)槠矫?,平面,又因?yàn)槠矫嫠云矫嬗制矫妫云矫嫫矫妗军c(diǎn)睛】本題考查了線面平行、面面垂直的證明,考查了線面平行的判斷定理、面面垂直的性質(zhì)定理和判定定理,考查了推理論證能力.18、(1)或;(2)、.【解析】

(1)由先求的值,再求角即可;(2)先由求出,再根據(jù)求出即可.【詳解】(1)由已知,又,所以,即,或;(2)因?yàn)?,由可得,又因?yàn)?,所以,即,總之?【點(diǎn)睛】本題主要考查正弦定理、余弦定理及三角形面積公式的應(yīng)用,屬常規(guī)考題.19、(1)4;(2)【解析】

(1)利用兩角差的正弦和正弦定理將條件化成,再利用余弦定理代入,即可求得的值;(2)由可求得,的值,再由面積公式求得,結(jié)合余弦定理可得,解方程即可得答案.【詳解】(1)∵,∴,∴∴,解得:.(2),,,,,∵,∴.【點(diǎn)睛】本題考查兩角差的正弦、正弦定理、余弦定理的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力.20、(1);(2)【解析】

(1)由,構(gòu)造是以為首項(xiàng),為公比等比數(shù)列,利用等比數(shù)列的通項(xiàng)公式可得結(jié)果;(2)由(1)得,利用裂項(xiàng)相消可求.【詳解】(1)由得:,即,且數(shù)列是以為首項(xiàng),為公比的等比數(shù)列數(shù)列的通項(xiàng)公式為:(2)由(1)得:【點(diǎn)睛】關(guān)系式可構(gòu)造為,中檔題。21、(1)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論