江蘇省東臺(tái)市實(shí)驗(yàn)初中2024年高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考試題含解析_第1頁
江蘇省東臺(tái)市實(shí)驗(yàn)初中2024年高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考試題含解析_第2頁
江蘇省東臺(tái)市實(shí)驗(yàn)初中2024年高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考試題含解析_第3頁
江蘇省東臺(tái)市實(shí)驗(yàn)初中2024年高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考試題含解析_第4頁
江蘇省東臺(tái)市實(shí)驗(yàn)初中2024年高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江蘇省東臺(tái)市實(shí)驗(yàn)初中2024年高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.從1,2,3,…,9這個(gè)9個(gè)數(shù)中任取5個(gè)不同的數(shù),則這5個(gè)數(shù)的中位數(shù)是5的概率等于()A.57 B.59 C.22.已知直三棱柱的所有棱長都相等,為的中點(diǎn),則與所成角的余弦值為()A. B. C. D.3.設(shè)等比數(shù)列的公比為,其前項(xiàng)的積為,并且滿足條件:;給出下列論:①;②;③值是中最大值;④使成立的最大自然數(shù)等于198.其中正確的結(jié)論是()A.①③ B.①④ C.②③ D.②④4.若正實(shí)數(shù),滿足,且恒成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.5.已知集合,,則()A. B. C. D.6.在中,分別為角的對(duì)邊,若的面積為,則的值為()A. B. C. D.7.執(zhí)行如圖所示的程序框圖,若輸入的a,b的值分別為1,1,則輸出的是()A.29 B.17 C.12 D.58.已知橢圓C:的左右焦點(diǎn)為F1,F2離心率為,過F2的直線l交C與A,B兩點(diǎn),若△AF1B的周長為,則C的方程為()A. B. C. D.9.已知的三個(gè)內(nèi)角所對(duì)的邊分別為.若,則該三角形的形狀是()A.等邊三角形 B.等腰三角形 C.等腰三角形或直角三角形 D.直角三角形10.為了治療某種疾病,研制了一種新藥,為確定該藥的療效,生物實(shí)驗(yàn)室有只小動(dòng)物,其中有3只注射過該新藥,若從這只小動(dòng)物中隨機(jī)取出只檢測,則恰有只注射過該新藥的概率為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.向量滿足,,則向量的夾角的余弦值為_____.12.已知直線與,當(dāng)時(shí),實(shí)數(shù)_______;當(dāng)時(shí),實(shí)數(shù)_______.13.一個(gè)公司共有240名員工,下設(shè)一些部門,要采用分層抽樣方法從全體員工中抽取一個(gè)容量為20的樣本.已知某部門有60名員工,那么從這一部門抽取的員工人數(shù)是.14.如圖,以為直徑的圓中,,在圓上,,于,于,,記,,的面積和為,則的最大值為______.15.已知中,,則面積的最大值為_____16.在公差為的等差數(shù)列中,有性質(zhì):,根據(jù)上述性質(zhì),相應(yīng)地在公比為等比數(shù)列中,有性質(zhì):____________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.對(duì)于函數(shù)f1(x),?f2(x),?h(x),如果存在實(shí)數(shù)(1)下面給出兩組函數(shù),h(x)是否分別為f1第一組:f1第二組:;(2)設(shè)f1x=log2x,f2x18.在中,角A,B,C的對(duì)邊分別為a,b,c,,且.(1)求A;(2)求面積的最大值.19.如圖1,ABCD為菱形,∠ABC=60°,△PAB是邊長為2的等邊三角形,點(diǎn)M為AB的中點(diǎn),將△PAB沿AB邊折起,使平面PAB⊥平面ABCD,連接PC、PD,如圖2,(1)證明:AB⊥PC;(2)求PD與平面ABCD所成角的正弦值(3)在線段PD上是否存在點(diǎn)N,使得PB∥平面MC?若存在,請(qǐng)找出N點(diǎn)的位置;若不存在,請(qǐng)說明理由20.(1)任意向軸上這一區(qū)間內(nèi)投擲一個(gè)點(diǎn),則該點(diǎn)落在區(qū)間內(nèi)的概率是多少?(2)已知向量,,若,分別表示一枚質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時(shí)第一次、第二次出現(xiàn)的點(diǎn)數(shù),求滿足的概率.21.某桶裝水經(jīng)營部每天的房租、人員工資等固定成本為200元,每桶水的進(jìn)價(jià)為3元,根據(jù)以往的經(jīng)驗(yàn)售價(jià)為4元時(shí),可賣出280桶;若銷售單價(jià)每增加1元,日均銷售量就減少40桶,則這個(gè)經(jīng)營部怎樣定價(jià)才能獲得最大利潤?最大利潤是多少?

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】試題分析:設(shè)事件為“從1,2,3,…,9這9個(gè)數(shù)中5個(gè)數(shù)的中位數(shù)是5”,則基本事件總數(shù)為種,事件所包含的基本事件的總數(shù)為:,所以由古典概型的計(jì)算公式知,,故應(yīng)選.考點(diǎn):1.古典概型;2、D【解析】

取的中點(diǎn),連接,則,所以異面直線與所成角就是直線與所成角,在中,利用余弦定理,即可求解.【詳解】由題意,取的中點(diǎn),連接,則,所以異面直線與所成角就是直線與所成角,設(shè)正三棱柱的各棱長為,則,設(shè)直線與所成角為,在中,由余弦定理可得,即異面直線與所成角的余弦值為,故選D.【點(diǎn)睛】本題主要考查了異面直線所成角的求解,其中解答中把異面直線所成的角轉(zhuǎn)化為相交直線所成的角是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.3、B【解析】

利用等比數(shù)列的性質(zhì)及等比數(shù)列的通項(xiàng)公式判斷①正確;利用等比數(shù)列的性質(zhì)及不等式的性質(zhì)判斷②錯(cuò)誤;利用等比數(shù)列的性質(zhì)判斷③錯(cuò)誤;利用等比數(shù)列的性質(zhì)判斷④正確,,從而得出結(jié)論.【詳解】解:由可得又即由,即,結(jié)合,所以,,即,,即,即①正確;又,所以,即,即②錯(cuò)誤;因?yàn)?,即值是中最大值,即③錯(cuò)誤;由,即,即,又,即,即④正確,綜上可得正確的結(jié)論是①④,故選:B.【點(diǎn)睛】本題考查了等比數(shù)列的性質(zhì)及不等式的性質(zhì),重點(diǎn)考查了運(yùn)算能力,屬中檔題.4、B【解析】

根據(jù),結(jié)合基本不等式可求得,從而得到關(guān)于的不等式,解不等式求得結(jié)果.【詳解】由題意知:,,(當(dāng)且僅當(dāng),即時(shí)取等號(hào)),解得:本題正確選項(xiàng):【點(diǎn)睛】本題考查利用基本不等式求解和的最小值問題,關(guān)鍵是配湊出符合基本不等式的形式,從而求得最值.5、A【解析】

先分別求出集合,,由此能求出.【詳解】集合,,1,,或,,,.故選:.【點(diǎn)睛】本題考查交集的求法,考查交集定義等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查函數(shù)與方程思想,是基礎(chǔ)題.6、B【解析】試題分析:由已知條件及三角形面積計(jì)算公式得由余弦定理得考點(diǎn):考查三角形面積計(jì)算公式及余弦定理.7、B【解析】

根據(jù)程序框圖依次計(jì)算得到答案.【詳解】結(jié)束,輸出故答案選B【點(diǎn)睛】本題考查了程序框圖的計(jì)算,屬于??碱}型.8、A【解析】

若△AF1B的周長為4,由橢圓的定義可知,,,,,所以方程為,故選A.考點(diǎn):橢圓方程及性質(zhì)9、B【解析】

利用三角形的內(nèi)角關(guān)系及三角變換公式得到,從而得到,此三角形的形狀可判斷.【詳解】因?yàn)?,故,整理得到,所以,因,所以即,故為等腰三角形,故選B.【點(diǎn)睛】本題考查兩角和、差的正弦,屬于基礎(chǔ)題,注意角的范圍的討論.10、B【解析】

將只注射過新藥和未注射過新藥的小動(dòng)物分別編號(hào),列出所有的基本事件,并確定事件“恰有只注射過該新藥”所包含的基本事件的數(shù)目,然后利用古典概型的概率計(jì)算公式可該事件的概率.【詳解】將只注射過新藥的小動(dòng)物編號(hào)為、、,只未注射新藥的小動(dòng)物編號(hào)為、、,記事件恰有只注射過該新藥,所有的基本事件有:、、、、、、、、、、、、、、,共個(gè),其中事件所包含的基本事件個(gè)數(shù)為個(gè),由古典概型的概率公式得,故選B.【點(diǎn)睛】本題考查古典概型的概率公式,列舉基本事件是解題的關(guān)鍵,一般在列舉基本事件有枚舉法和數(shù)狀圖法,列舉時(shí)應(yīng)注意不重不漏,考查計(jì)算能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

通過向量的垂直關(guān)系,結(jié)合向量的數(shù)量積求解向量的夾角的余弦值.【詳解】向量,滿足,,可得:,,向量的夾角為,所以.故答案為.【點(diǎn)睛】本題考查向量的數(shù)量積的應(yīng)用,向量的夾角的余弦函數(shù)值的求法.考查計(jì)算能力.屬于基礎(chǔ)題.12、【解析】

根據(jù)兩直線垂直和平行的充要條件,得到關(guān)于的方程,解方程即可得答案.【詳解】當(dāng)時(shí),,解得:;當(dāng)時(shí),且,解得:.故答案為:;.【點(diǎn)睛】本題考查兩直線垂直和平行的充要條件,考查邏輯推理能力和運(yùn)算求解能力,屬于基礎(chǔ)題.13、5【解析】設(shè)一部門抽取的員工人數(shù)為x,則.14、【解析】

可設(shè),表示出S關(guān)于的函數(shù),從而轉(zhuǎn)化為三角函數(shù)的最大值問題.【詳解】設(shè),則,,,當(dāng)時(shí),.【點(diǎn)睛】本題主要考查函數(shù)的實(shí)際運(yùn)用,三角函數(shù)最值問題,意在考查學(xué)生的劃歸能力,分析能力和數(shù)學(xué)建模能力.15、【解析】

設(shè),則,根據(jù)面積公式得,由余弦定理求得代入化簡,由三角形三邊關(guān)系求得,由二次函數(shù)的性質(zhì)求得取得最大值.【詳解】解:設(shè),則,根據(jù)面積公式得,由余弦定理可得,可得:,由三角形三邊關(guān)系有:,且,解得:,故當(dāng)時(shí),取得最大值,故答案為:.【點(diǎn)睛】本題主要考查余弦定理和面積公式在解三角形中的應(yīng)用.當(dāng)涉及最值問題時(shí),可考慮用函數(shù)的單調(diào)性和定義域等問題,屬于中檔題.16、【解析】

根據(jù)題中條件,類比等差數(shù)列的性質(zhì),可直接得出結(jié)果.【詳解】因?yàn)樵诠顬榈牡炔顢?shù)列中,有性質(zhì):,類比等差數(shù)列的性質(zhì),可得:在公比為等比數(shù)列中,故答案為:【點(diǎn)睛】本題主要考查類比推理,只需根據(jù)題中條件,結(jié)合等差數(shù)列與等比數(shù)列的特征,即可得出結(jié)果,屬于??碱}型.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)(-∞,-5)【解析】

(1)①設(shè)asinx+bcos取a=12,??b=②設(shè)a(x2-x)+b(則a+b=1-a+b=-1b=1,該方程組無解.所以h(x)不是(2)因?yàn)閒1所以h(x)=2f不等式3h2(x)+2等價(jià)于t<-3h2(x)-2令s=log2x,則s∈[1,知y取得最大值-5,所以t<-5.考點(diǎn):①創(chuàng)新題型即新定義問題②不等式有解球參數(shù)范圍問題18、(1);(2)【解析】

(1)由題目條件a=1,可以將(1+b)(sinA-sinB)=(c-b)sinC中的1換成a,達(dá)到齊次化的目的,再用正余弦定理解決;(2)已知∠A,要求△ABC的面積,可用公式,因此把問題轉(zhuǎn)化為求bc的最大值.【詳解】(1)因?yàn)椋?+b)(sinA-sinB)=(c-b)sinC,由正弦定理得:(1+b)(a-b)=(c-b)c∴(a+b)(a-b)=(c-b)c,得b2+c2-a2=bc由余弦定理得:,所以.(2)因?yàn)閎2+c2-a2=bc,所以bc=b2+c2-1≥2bc-1,可得bc≤1;所以,當(dāng)且僅當(dāng)b=c=1時(shí),取等號(hào).∴面積的最大值.【點(diǎn)睛】本題考查正弦定理解三角形及面積問題,解決三角形面積最值問題常常結(jié)合均值不等式求解,屬于中等題.19、(1)證明見解析(2).(3)存在,PN.【解析】

(1)只需證明AB⊥面PMC,即可證明AB⊥PC;(2)由PM⊥面ABCD得∠PDM為PD與平面ABCD所成角,解△PDM即可求得PD與平面ABCD所成角的正弦值.(3)設(shè)DB∩MC=E,連接NE,可得PB∥NE,.即可.【詳解】(1)證明:∵△PAB是邊長為2的等邊三角形,點(diǎn)M為AB的中點(diǎn),∴PM⊥AB.∵ABCD為菱形,∠ABC=60°.∴CM⊥AB,且PM∩MC=M,∴AB⊥面PMC,∵PC?面PMC,∴AB⊥PC;(2)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PM⊥AB.∴PM⊥面ABCD,∴∠PDM為PD與平面ABCD所成角.PM,MD,PDsin∠PMD,即PD與平面ABCD所成角的正弦值為.(3)設(shè)DB∩MC=E,連接NE,則有面PBD∩面MNC=NE,∵PB∥平面MNC,∴PB∥NE.∴.線段PD上存在點(diǎn)N,使得PB∥平面MNC,且PN.【點(diǎn)睛】本題考查了面面垂直的性質(zhì)定理、線面垂直的判定定理、線面角,利用線面平行的性質(zhì)定理確定點(diǎn)N的位置是關(guān)鍵,屬于中檔題..20、(1)(2)【解析】

(1)幾何概型的計(jì)算公式求解即可;(2)求出該骰子先后拋擲兩次的基本事件總數(shù),根據(jù)數(shù)量積公式得出滿足包含的基本事件個(gè)數(shù),由古典概型概率公式求解即可.【詳解】解:(1)由題意可知,任意向這一區(qū)間內(nèi)擲一點(diǎn),該點(diǎn)落在內(nèi)哪個(gè)位置是等可能的.令,則由幾何概型的計(jì)算公式可知:.(2)將一枚質(zhì)地均勻的骰子先后拋擲兩次,共有個(gè)基本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論