2024屆甘肅省武威市六中高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第1頁(yè)
2024屆甘肅省武威市六中高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第2頁(yè)
2024屆甘肅省武威市六中高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第3頁(yè)
2024屆甘肅省武威市六中高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第4頁(yè)
2024屆甘肅省武威市六中高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆甘肅省武威市六中高一下數(shù)學(xué)期末統(tǒng)考模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如圖,正方形中,分別是的中點(diǎn),若則()A. B. C. D.2.若函數(shù)的定義域?yàn)镸={x|-2≤x≤2},值域?yàn)镹={y|0≤y≤2},則函數(shù)的圖像可能是()A. B. C. D.3.若,,表示三條不重合的直線,,表示兩個(gè)不同的平面,則下列命題中,正確的個(gè)數(shù)是()①若,,則②,,,則③若,,則④若,,則A.0 B.1 C.2 D.34.等差數(shù)列{an}的前n項(xiàng)和為Sn,若S9=S4,則S13=()A.13 B.7 C.0 D.15.在等比數(shù)列中,成等差數(shù)列,則公比等于()A.1

2 B.?1

?2 C.1

?2 D.?1

26.中國(guó)數(shù)學(xué)家劉微在《九章算術(shù)注》中提出“割圓”之說(shuō):“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體,而無(wú)所失矣.”意思是“圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加的時(shí)候,它的周長(zhǎng)的極限是圓的周長(zhǎng),它的面積的極限是圓的面積”.如圖,若在圓內(nèi)任取一點(diǎn),則此點(diǎn)取自其內(nèi)接正六邊形的邊界及其內(nèi)部的概率為()A. B. C. D.7.若集合A=x∈Nx-1≤1A.3 B.4 C.7 D.88.若函數(shù)有零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.9.如圖,在四棱錐中,底面為平行四邊形,,,,,且平面,為的中點(diǎn),則下列結(jié)論錯(cuò)誤的是()A. B.C.平面平面 D.三棱錐的體積為10.在正方體中,為棱的中點(diǎn),則異面直線與所成角的正切值為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知一組數(shù)據(jù)、、、、、,那么這組數(shù)據(jù)的平均數(shù)為_(kāi)_________.12.一個(gè)圓柱和一個(gè)圓錐的底面直徑和它們的高都與某一個(gè)球的直徑相等,這時(shí)圓柱、圓錐、球的體積之比為.13.甲船在島的正南處,,甲船以每小時(shí)的速度向正北方向航行,同時(shí)乙船自出發(fā)以每小時(shí)的速度向北偏東的方向駛?cè)?,甲、乙兩船相距最近的距離是_____.14.若,,則__________.15.已知中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,,,則的面積為_(kāi)_____;16.函數(shù)的定義域?yàn)開(kāi)______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知數(shù)列前n項(xiàng)和,點(diǎn)在函數(shù)的圖象上.(1)求的通項(xiàng)公式;(2)設(shè)數(shù)列的前n項(xiàng)和為,不等式對(duì)任意的正整數(shù)恒成立,求實(shí)數(shù)a的取值范圍.18.設(shè)向量,,其中,,且.(1)求實(shí)數(shù)的值;(2)若,且,求的值.19.如圖在四棱錐中,底面是矩形,點(diǎn)、分別是棱和的中點(diǎn).(1)求證:平面;(2)若,且平面平面,證明平面.20.如圖,在四棱錐中,平面,底面為菱形.(1)求證:平面;(2)若為的中點(diǎn),,求證:平面平面.21.已知向量,,.(1)若,求實(shí)數(shù)的值;(2)若,求向量與的夾角.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】試題分析:取向量作為一組基底,則有,所以又,所以,即.2、B【解析】因?yàn)閷?duì)A不符合定義域當(dāng)中的每一個(gè)元素都有象,即可排除;對(duì)B滿足函數(shù)定義,故符合;對(duì)C出現(xiàn)了定義域當(dāng)中的一個(gè)元素對(duì)應(yīng)值域當(dāng)中的兩個(gè)元素的情況,不符合函數(shù)的定義,從而可以否定;對(duì)D因?yàn)橹涤虍?dāng)中有的元素沒(méi)有原象,故可否定.故選B.3、B【解析】

①根據(jù)空間線線位置關(guān)系的定義判定;②根據(jù)面面平行的性質(zhì)判定;③根據(jù)空間線線垂直的定義判定;④根據(jù)線面垂直的性質(zhì)判定.【詳解】解:①若,,與的位置關(guān)系不定,故錯(cuò);②若,,,則或、異面,故錯(cuò);③若,,則或、異面,故錯(cuò);④若,,則,故正確.故選:.【點(diǎn)睛】本題考查了空間線面位置關(guān)系,考查了空間想象能力,屬于中檔題.4、C【解析】

由題意,利用等差數(shù)列前n項(xiàng)和公式求出a1=﹣6d,由此能求出S13的值.【詳解】∵等差數(shù)列{an}的前n項(xiàng)和為Sn,S9=S4,∴4a1,解得a1=﹣6d,∴S1378d﹣78d=1.故選:C.【點(diǎn)睛】本題考查等差數(shù)列的前n項(xiàng)和公式的應(yīng)用,考查運(yùn)算求解能力,是基礎(chǔ)題.5、C【解析】

設(shè)出基本量,利用等比數(shù)列的通項(xiàng)公式,再利用等差數(shù)列的中項(xiàng)關(guān)系,即可列出相應(yīng)方程求解【詳解】等比數(shù)列中,設(shè)首項(xiàng)為,公比為,成等差數(shù)列,,即,或答案選C【點(diǎn)睛】本題考查等差數(shù)列和等比數(shù)列求基本量的問(wèn)題,屬于基礎(chǔ)題6、C【解析】

設(shè)出圓的半徑,表示出圓的面積和圓內(nèi)接正六邊形的面積,即可由幾何概型概率計(jì)算公式得解.【詳解】設(shè)圓的半徑為則圓的面積為圓內(nèi)接正六邊形的面積為由幾何概型概率可知,在圓內(nèi)任取一點(diǎn),則此點(diǎn)取自其內(nèi)接正六邊形的邊界及其內(nèi)部的概率為故選:C【點(diǎn)睛】本題考查了圓的面積及圓內(nèi)接正六邊形的面積求法,幾何概型概率的計(jì)算公式,屬于基礎(chǔ)題.7、A【解析】

先求出A∩B的交集,再依據(jù)求真子集個(gè)數(shù)公式求出,也可列舉求出?!驹斀狻緼=x∈Nx-1≤1A∩B=0,1,所以A∩B的真子集的個(gè)數(shù)為2【點(diǎn)睛】有限集合a1,a2,?8、D【解析】

令,得,再令,得出,并構(gòu)造函數(shù),將問(wèn)題轉(zhuǎn)化為直線與函數(shù)在區(qū)間有交點(diǎn),利用數(shù)形結(jié)合思想可得出實(shí)數(shù)的取值范圍.【詳解】令,得,,令,則,所以,,構(gòu)造函數(shù),其中,由于,,,所以,當(dāng)時(shí),直線與函數(shù)在區(qū)間有交點(diǎn),因此,實(shí)數(shù)的取值范圍是,故選D.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)問(wèn)題,在求解含參函數(shù)零點(diǎn)的問(wèn)題時(shí),若函數(shù)中只含有單一參數(shù),可以采用參變量分離法轉(zhuǎn)化為參數(shù)直線與定函數(shù)圖象的交點(diǎn)個(gè)數(shù)問(wèn)題,難點(diǎn)在于利用換元法將函數(shù)解析式化簡(jiǎn),考查數(shù)形結(jié)合思想,屬于中等題.9、B【解析】

根據(jù)余弦定理可求得,利用勾股定理證得,由線面垂直性質(zhì)可知,利用線面垂直判定定理可得平面,利用線面垂直性質(zhì)可知正確;假設(shè)正確,由和假設(shè)可證得平面,由線面垂直性質(zhì)可知,從而得到,顯然錯(cuò)誤,則錯(cuò)誤;由面面垂直判定定理可證得正確;由可求得三棱錐體積,知正確,從而可得選項(xiàng).【詳解】,,平面,平面又平面,平面平面,則正確;若,又且平面,平面平面又,與矛盾,假設(shè)錯(cuò)誤,則錯(cuò)誤;平面,平面又平面平面平面,則正確;為中點(diǎn),,則正確本題正確選項(xiàng):【點(diǎn)睛】本題考查立體幾何中相關(guān)命題的判斷,涉及到線面垂直的判定與性質(zhì)定理的應(yīng)用、面面垂直關(guān)系的判定、三棱錐體積的求解等知識(shí),是對(duì)立體幾何部分的定理的綜合考查,關(guān)鍵是能夠準(zhǔn)確判定出圖形中的線面垂直關(guān)系.10、C【解析】

利用正方體中,,將問(wèn)題轉(zhuǎn)化為求共面直線與所成角的正切值,在中進(jìn)行計(jì)算即可.【詳解】在正方體中,,所以異面直線與所成角為,設(shè)正方體邊長(zhǎng)為,則由為棱的中點(diǎn),可得,所以,則.故選C.【點(diǎn)睛】求異面直線所成角主要有以下兩種方法:(1)幾何法:①平移兩直線中的一條或兩條,到一個(gè)平面中;②利用邊角關(guān)系,找到(或構(gòu)造)所求角所在的三角形;③求出三邊或三邊比例關(guān)系,用余弦定理求角;(2)向量法:①求兩直線的方向向量;②求兩向量夾角的余弦;③因?yàn)橹本€夾角為銳角,所以②對(duì)應(yīng)的余弦取絕對(duì)值即為直線所成角的余弦值.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用平均數(shù)公式可求得結(jié)果.【詳解】由題意可知,數(shù)據(jù)、、、、、的平均數(shù)為.故答案為:.【點(diǎn)睛】本題考查平均數(shù)的計(jì)算,考查平均數(shù)公式的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.12、【解析】

設(shè)球的半徑為r,則,,,所以,故答案為.考點(diǎn):圓柱,圓錐,球的體積公式.點(diǎn)評(píng):圓柱,圓錐,球的體積公式分別為.13、【解析】

根據(jù)條件畫(huà)出示意圖,在三角形中利用余弦定理求解相距的距離,利用二次函數(shù)對(duì)稱(chēng)軸及可求解出最值.【詳解】假設(shè)經(jīng)過(guò)小時(shí)兩船相距最近,甲、乙分別行至,,如圖所示,可知,,,.當(dāng)小時(shí)時(shí)甲、乙兩船相距最近,最近距離為.【點(diǎn)睛】本題考查解三角形的實(shí)際應(yīng)用,難度較易.關(guān)鍵是通過(guò)題意將示意圖畫(huà)出來(lái),然后將待求量用未知數(shù)表示,最后利用函數(shù)思想求最值.14、【解析】

由等比數(shù)列前n項(xiàng)公式求出已知等式左邊的和,再求解.【詳解】易知不合題意,∴,若,則,不合題意,∴,,∴,,又,∴.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列的前n項(xiàng)和公式,解題時(shí)需分類(lèi)討論,首先對(duì)的情形進(jìn)行說(shuō)明,然后按是否為1分類(lèi).15、【解析】

先根據(jù)以及余弦定理計(jì)算出的值,再由面積公式即可求解出的面積.【詳解】因?yàn)?,所以,所以,所?故答案為:.【點(diǎn)睛】本題考查解三角形中利用余弦定理求角以及面積公式的運(yùn)用,難度較易.三角形中,已知兩邊的乘積和第三邊所對(duì)的角即可利用面積公式求解出三角形面積.16、【解析】

由二次根式有意義,得:,然后利用指數(shù)函數(shù)的單調(diào)性即可得到結(jié)果.【詳解】由二次根式有意義,得:,即,因?yàn)樵赗上是增函數(shù),所以,x≤2,即定義域?yàn)椋骸军c(diǎn)睛】本題主要考查函數(shù)定義域的求法以及指數(shù)不等式的解法,要求熟練掌握常見(jiàn)函數(shù)成立的條件,比較基礎(chǔ).三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】試題分析:(1)將點(diǎn)的坐標(biāo)代入函數(shù)的方程得到.利用,可求得數(shù)列的通項(xiàng)公式為.(2)利用裂項(xiàng)求和法求得.為遞增的數(shù)列,當(dāng)時(shí)有最小值為,所以,解得.試題解析:(1)點(diǎn)在函數(shù)的圖象上,.①當(dāng)時(shí),,②①-②得.當(dāng)時(shí),,符合上式..(2)由(1)得,.,數(shù)列單調(diào)遞增,中的最小項(xiàng)為.要使不等式對(duì)任意正整數(shù)恒成立,只要,即.解得,即實(shí)數(shù)的取值范圍為.點(diǎn)睛:本題主要考查函數(shù)與數(shù)列,考查已知數(shù)列前項(xiàng)和,求數(shù)列通項(xiàng)的方法,即用公式.要注意驗(yàn)證當(dāng)時(shí)等號(hào)是否成立.考查了裂項(xiàng)求和法,當(dāng)數(shù)列通項(xiàng)是分?jǐn)?shù)的形式,并且分母是兩個(gè)等差數(shù)列的乘積的時(shí)候,可考慮用裂項(xiàng)求和法求和.還考查了數(shù)列的單調(diào)性和恒成立問(wèn)題的解法.18、(1)(2)【解析】

(1)利用向量模的坐標(biāo)求法可得,再利用同角三角函數(shù)的基本關(guān)系即可求解.(2)根據(jù)向量數(shù)量積的坐標(biāo)表示以及兩角差的余弦公式的逆應(yīng)用可得,進(jìn)而求出,根據(jù)同角三角函數(shù)的基本關(guān)系即可求解.【詳解】(1)由知所以.又因?yàn)?,所以.因?yàn)?,所以,所以.又因?yàn)?,所以.?)由(1)知.由,得,即.因?yàn)?,所以,所以.所以,因此.【點(diǎn)睛】本題考查了向量數(shù)量積的坐標(biāo)表示、兩角差的余弦公式以及同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.19、(1)見(jiàn)證明;(2)見(jiàn)證明【解析】

(1)可證,從而得到要求證的線面平行.(2)可證,再由及是棱的中點(diǎn)可得,從而得到平面.【詳解】(1)證明:因?yàn)辄c(diǎn)、分別是棱和的中點(diǎn),所以,又在矩形中,,所以,又面,面,所以平面(2)證明:在矩形中,,又平面平面,平面平面,面,所以平面,又面,所以①因?yàn)榍沂堑闹悬c(diǎn),所以,②由①②及面,面,,所以平面.【點(diǎn)睛】線面平行的證明的關(guān)鍵是在面中找到一條與已知直線平行的直線,找線的方法可利用三角形的中位線或平行公理.線面垂直的判定可由線線垂直得到,注意線線是相交的,而要求證的線線垂直又可以轉(zhuǎn)化為已知的線面垂直(有時(shí)它來(lái)自面面垂直)來(lái)考慮.20、(1)證明見(jiàn)解析,(2)證明見(jiàn)解析【解析】

(1)根據(jù)底面為菱形得到,根據(jù)線面垂直的性質(zhì)得到,再根據(jù)線面垂直的判定即可得到平面.(2)首先利用線面垂直的判定證明平面,再利用面面垂直的判定證明平面平面即可.【詳解】(1)因?yàn)榈酌鏋榱庑?,所?平面,平面,所以.平面.(2)因?yàn)榈酌鏋榱庑?/p>

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論