版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年湖北省武漢市梅苑中學(xué)中考數(shù)學(xué)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.下列現(xiàn)象,能說(shuō)明“線動(dòng)成面”的是()A.天空劃過(guò)一道流星B.汽車雨刷在擋風(fēng)玻璃上刷出的痕跡C.拋出一塊小石子,石子在空中飛行的路線D.旋轉(zhuǎn)一扇門,門在空中運(yùn)動(dòng)的痕跡2.如圖,在△ABC中,CD⊥AB于點(diǎn)D,E,F(xiàn)分別為AC,BC的中點(diǎn),AB=10,BC=8,DE=4.5,則△DEF的周長(zhǎng)是()A.9.5 B.13.5 C.14.5 D.173.如圖,在△ABC中,∠B=90°,AB=3cm,BC=6cm,動(dòng)點(diǎn)P從點(diǎn)A開始沿AB向點(diǎn)B以1cm/s的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B開始沿BC向點(diǎn)C以2cm/s的速度移動(dòng),若P,Q兩點(diǎn)分別從A,B兩點(diǎn)同時(shí)出發(fā),P點(diǎn)到達(dá)B點(diǎn)運(yùn)動(dòng)停止,則△PBQ的面積S隨出發(fā)時(shí)間t的函數(shù)關(guān)系圖象大致是()A. B. C. D.4.下列圖形中,屬于中心對(duì)稱圖形的是()A. B.C. D.5.如圖,在平行四邊形ABCD中,F(xiàn)是邊AD上的一點(diǎn),射線CF和BA的延長(zhǎng)線交于點(diǎn)E,如果,那么的值是()A. B. C. D.6.生物興趣小組的學(xué)生,將自己收集的標(biāo)本向本組其他成員各贈(zèng)送一件,全組共互贈(zèng)了132件.如果全組共有x名同學(xué),則根據(jù)題意列出的方程是()A.x(x+1)=132 B.x(x-1)=132 C.x(x+1)=132× D.x(x-1)=132×27.民族圖案是數(shù)學(xué)文化中的一塊瑰寶.下列圖案中,既不是中心對(duì)稱圖形也不是軸對(duì)稱圖形的是()
A. B. C. D.8.關(guān)于x的一元二次方程x2+3x+m=0有兩個(gè)不相等的實(shí)數(shù)根,則A.m≤94B.m<949.下列四個(gè)實(shí)數(shù)中,比5小的是()A. B. C. D.10.如圖,A、B、C是小正方形的頂點(diǎn),且每個(gè)小正方形的邊長(zhǎng)為1,則tan∠BAC的值為()A. B.1 C. D.11.的值是A. B. C. D.12.3的相反數(shù)是()A.﹣3 B.3 C. D.﹣二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.若關(guān)于x的一元二次方程x2+2x﹣m=0有兩個(gè)相等的實(shí)數(shù)根,則m的值為______.14.如圖,已知圓柱底面周長(zhǎng)為6cm,圓柱高為2cm,在圓柱的側(cè)面上,過(guò)點(diǎn)A和點(diǎn)C嵌有一圈金屬絲,則這圈金屬絲的周長(zhǎng)最小為_____cm.15.若方程x2+(m2﹣1)x+1+m=0的兩根互為相反數(shù),則m=______16.如圖,直線a,b被直線c所截,a∥b,∠1=∠2,若∠3=40°,則∠4等于________.17.在平面直角坐標(biāo)系中,已知,A(2,0),C(0,﹣1),若P為線段OA上一動(dòng)點(diǎn),則CP+AP的最小值為_____.18.拋物線y=x2﹣2x+m與x軸只有一個(gè)交點(diǎn),則m的值為_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)計(jì)算:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1.20.(6分)均衡化驗(yàn)收以來(lái),樂(lè)陵每個(gè)學(xué)校都高樓林立,校園環(huán)境美如畫,軟件、硬件等設(shè)施齊全,小明想要測(cè)量學(xué)校食堂和食堂正前方一棵樹的高度,他從食堂樓底M處出發(fā),向前走6米到達(dá)A處,測(cè)得樹頂端E的仰角為30°,他又繼續(xù)走下臺(tái)階到達(dá)C處,測(cè)得樹的頂端的仰角是60°,再繼續(xù)向前走到大樹底D處,測(cè)得食堂樓頂N的仰角為45°,已如A點(diǎn)離地面的高度AB=4米,∠BCA=30°,且B、C、D三點(diǎn)在同一直線上.(1)求樹DE的高度;(2)求食堂MN的高度.21.(6分)如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC交AC的延長(zhǎng)線于點(diǎn)E.求證:DE是⊙O的切線.求DE的長(zhǎng).22.(8分)如圖,在平面直角坐標(biāo)系中,正方形的邊長(zhǎng)為,頂點(diǎn)、分別在軸、軸的正半軸,拋物線經(jīng)過(guò)、兩點(diǎn),點(diǎn)為拋物線的頂點(diǎn),連接、、.求此拋物線的解析式.求此拋物線頂點(diǎn)的坐標(biāo)和四邊形的面積.23.(8分)某中學(xué)為了了解在校學(xué)生對(duì)校本課程的喜愛情況,隨機(jī)調(diào)查了部分學(xué)生對(duì)五類校本課程的喜愛情況,要求每位學(xué)生只能選擇一類最喜歡的校本課程,根據(jù)調(diào)查結(jié)果繪制了如下的兩個(gè)不完整統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中所提供的信息,完成下列問(wèn)題:(1)本次被調(diào)查的學(xué)生的人數(shù)為;(2)補(bǔ)全條形統(tǒng)計(jì)圖(3)扇形統(tǒng)計(jì)圖中,類所在扇形的圓心角的度數(shù)為;(4)若該中學(xué)有2000名學(xué)生,請(qǐng)估計(jì)該校最喜愛兩類校本課程的學(xué)生約共有多少名.24.(10分)如圖,以△ABC的一邊AB為直徑作⊙O,⊙O與BC邊的交點(diǎn)D恰好為BC的中點(diǎn),過(guò)點(diǎn)D作⊙O的切線交AC邊于點(diǎn)E.(1)求證:DE⊥AC;(2)連結(jié)OC交DE于點(diǎn)F,若,求的值.25.(10分)在正方形ABCD中,動(dòng)點(diǎn)E,F(xiàn)分別從D,C兩點(diǎn)同時(shí)出發(fā),以相同的速度在直線DC,CB上移動(dòng).(1)如圖1,當(dāng)點(diǎn)E在邊DC上自D向C移動(dòng),同時(shí)點(diǎn)F在邊CB上自C向B移動(dòng)時(shí),連接AE和DF交于點(diǎn)P,請(qǐng)你寫出AE與DF的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由;(2)如圖2,當(dāng)E,F(xiàn)分別在邊CD,BC的延長(zhǎng)線上移動(dòng)時(shí),連接AE,DF,(1)中的結(jié)論還成立嗎?(請(qǐng)你直接回答“是”或“否”,不需證明);連接AC,請(qǐng)你直接寫出△ACE為等腰三角形時(shí)CE:CD的值;(3)如圖3,當(dāng)E,F(xiàn)分別在直線DC,CB上移動(dòng)時(shí),連接AE和DF交于點(diǎn)P,由于點(diǎn)E,F(xiàn)的移動(dòng),使得點(diǎn)P也隨之運(yùn)動(dòng),請(qǐng)你畫出點(diǎn)P運(yùn)動(dòng)路徑的草圖.若AD=2,試求出線段CP的最大值.26.(12分)如圖1,在平面直角坐標(biāo)系中,直線y=﹣x+1與拋物線y=ax2+bx+c(a≠0)相交于點(diǎn)A(1,0)和點(diǎn)D(﹣4,5),并與y軸交于點(diǎn)C,拋物線的對(duì)稱軸為直線x=﹣1,且拋物線與x軸交于另一點(diǎn)B.(1)求該拋物線的函數(shù)表達(dá)式;(2)若點(diǎn)E是直線下方拋物線上的一個(gè)動(dòng)點(diǎn),求出△ACE面積的最大值;(3)如圖2,若點(diǎn)M是直線x=﹣1的一點(diǎn),點(diǎn)N在拋物線上,以點(diǎn)A,D,M,N為頂點(diǎn)的四邊形能否成為平行四邊形?若能,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.27.(12分)閱讀(1)閱讀理解:如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.解決此問(wèn)題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DE=AD,再連接BE(或?qū)ⅰ鰽CD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷.中線AD的取值范圍是________;(2)問(wèn)題解決:如圖②,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證:BE+CF>EF;(3)問(wèn)題拓展:如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C為頂點(diǎn)作一個(gè)70°角,角的兩邊分別交AB,AD于E,F(xiàn)兩點(diǎn),連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】
本題是一道關(guān)于點(diǎn)、線、面、體的題目,回憶點(diǎn)、線、面、體的知識(shí);【詳解】解:∵A、天空劃過(guò)一道流星說(shuō)明“點(diǎn)動(dòng)成線”,∴故本選項(xiàng)錯(cuò)誤.∵B、汽車雨刷在擋風(fēng)玻璃上刷出的痕跡說(shuō)明“線動(dòng)成面”,∴故本選項(xiàng)正確.∵C、拋出一塊小石子,石子在空中飛行的路線說(shuō)明“點(diǎn)動(dòng)成線”,∴故本選項(xiàng)錯(cuò)誤.∵D、旋轉(zhuǎn)一扇門,門在空中運(yùn)動(dòng)的痕跡說(shuō)明“面動(dòng)成體”,∴故本選項(xiàng)錯(cuò)誤.故選B.【點(diǎn)睛】本題考查了點(diǎn)、線、面、體,準(zhǔn)確認(rèn)識(shí)生活實(shí)際中的現(xiàn)象是解題的關(guān)鍵.點(diǎn)動(dòng)成線、線動(dòng)成面、面動(dòng)成體.2、B【解析】
由三角形中位線定理和直角三角形斜邊上的中線等于斜邊的一半解答.【詳解】∵在△ABC中,CD⊥AB于點(diǎn)D,E,F(xiàn)分別為AC,BC的中點(diǎn),∴DE=AC=4.1,DF=BC=4,EF=AB=1,∴△DEF的周長(zhǎng)=(AB+BC+AC)=×(10+8+9)=13.1.故選B.【點(diǎn)睛】考查了三角形中位線定理和直角三角形斜邊上的中線,三角形的中位線平行于第三邊,且等于第三邊的一半.3、C【解析】
根據(jù)題意表示出△PBQ的面積S與t的關(guān)系式,進(jìn)而得出答案.【詳解】由題意可得:PB=3﹣t,BQ=2t,則△PBQ的面積S=PB?BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面積S隨出發(fā)時(shí)間t的函數(shù)關(guān)系圖象大致是二次函數(shù)圖象,開口向下.故選C.【點(diǎn)睛】此題主要考查了動(dòng)點(diǎn)問(wèn)題的函數(shù)圖象,正確得出函數(shù)關(guān)系式是解題關(guān)鍵.4、B【解析】
A、將此圖形繞任意點(diǎn)旋轉(zhuǎn)180度都不能與原圖重合,所以這個(gè)圖形不是中心對(duì)稱圖形.【詳解】A、將此圖形繞任意點(diǎn)旋轉(zhuǎn)180度都不能與原圖重合,所以這個(gè)圖形不是中心對(duì)稱圖形;B、將此圖形繞中心點(diǎn)旋轉(zhuǎn)180度與原圖重合,所以這個(gè)圖形是中心對(duì)稱圖形;C、將此圖形繞任意點(diǎn)旋轉(zhuǎn)180度都不能與原圖重合,所以這個(gè)圖形不是中心對(duì)稱圖形;D、將此圖形繞任意點(diǎn)旋轉(zhuǎn)180度都不能與原圖重合,所以這個(gè)圖形不是中心對(duì)稱圖形.故選B.【點(diǎn)睛】本題考查了軸對(duì)稱與中心對(duì)稱圖形的概念:中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后與原圖重合.5、D【解析】分析:根據(jù)相似三角形的性質(zhì)進(jìn)行解答即可.詳解:∵在平行四邊形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵∴∴∵AF∥BC,∴△EAF∽△EBC,∴故選D.點(diǎn)睛:考查相似三角形的性質(zhì):相似三角形的面積比等于相似比的平方.6、B【解析】全組有x名同學(xué),則每名同學(xué)所贈(zèng)的標(biāo)本為:(x-1)件,那么x名同學(xué)共贈(zèng):x(x-1)件,所以,x(x-1)=132,故選B.7、C【解析】分析:根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念,軸對(duì)稱圖形兩部分沿對(duì)稱軸折疊后可重合;中心對(duì)稱圖形是圖形沿對(duì)稱中心旋轉(zhuǎn)180度后與原圖重合.因此,A、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;B、是軸對(duì)稱圖形,也是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;C、不是軸對(duì)稱圖形,也不是中心對(duì)稱圖形,故本選項(xiàng)正確;D、是軸對(duì)稱圖形,也是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤.故選C.8、B【解析】試題分析:根據(jù)題意得△=32﹣4m>0,解得m<94故選B.考點(diǎn):根的判別式.點(diǎn)睛:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的判別式△=b2-4ac.當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒(méi)有實(shí)數(shù)根.9、A【解析】
首先確定無(wú)理數(shù)的取值范圍,然后再確定是實(shí)數(shù)的大小,進(jìn)而可得答案.【詳解】解:A、∵5<<6,∴5﹣1<﹣1<6﹣1,∴﹣1<5,故此選項(xiàng)正確;B、∵∴,故此選項(xiàng)錯(cuò)誤;C、∵6<<7,∴5<﹣1<6,故此選項(xiàng)錯(cuò)誤;D、∵4<<5,∴,故此選項(xiàng)錯(cuò)誤;故選A.【點(diǎn)睛】考查無(wú)理數(shù)的估算,掌握無(wú)理數(shù)估算的方法是解題的關(guān)鍵.通常使用夾逼法.10、B【解析】
連接BC,由網(wǎng)格求出AB,BC,AC的長(zhǎng),利用勾股定理的逆定理得到△ABC為等腰直角三角形,即可求出所求.【詳解】如圖,連接BC,由網(wǎng)格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC為等腰直角三角形,∴∠BAC=45°,則tan∠BAC=1,故選B.【點(diǎn)睛】本題考查了銳角三角函數(shù)的定義,解直角三角形,以及勾股定理,熟練掌握勾股定理是解本題的關(guān)鍵.11、D【解析】
根據(jù)特殊角三角函數(shù)值,可得答案.【詳解】解:,故選:D.【點(diǎn)睛】本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關(guān)鍵.12、A【解析】試題分析:根據(jù)相反數(shù)的概念知:1的相反數(shù)是﹣1.故選A.【考點(diǎn)】相反數(shù).二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、-1【解析】
根據(jù)關(guān)于x的一元二次方程x2+2x﹣m=0有兩個(gè)相等的實(shí)數(shù)根可知△=0,求出m的取值即可.【詳解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案為-1.【點(diǎn)睛】本題考查的是根的判別式,即一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:①當(dāng)△>0時(shí),方程有兩個(gè)不相等的兩個(gè)實(shí)數(shù)根;②當(dāng)△=0時(shí),方程有兩個(gè)相等的兩個(gè)實(shí)數(shù)根;③當(dāng)△<0時(shí),方程無(wú)實(shí)數(shù)根.14、2【解析】
要求絲線的長(zhǎng),需將圓柱的側(cè)面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果,在求線段長(zhǎng)時(shí),根據(jù)勾股定理計(jì)算即可.【詳解】解:如圖,把圓柱的側(cè)面展開,得到矩形,則這圈金屬絲的周長(zhǎng)最小為2AC的長(zhǎng)度.∵圓柱底面的周長(zhǎng)為6cm,圓柱高為2cm,∴AB=2cm,BC=BC′=3cm,∴AC2=22+32=13,∴AC=cm,∴這圈金屬絲的周長(zhǎng)最小為2AC=2cm.故答案為2.【點(diǎn)睛】本題考查了平面展開?最短路徑問(wèn)題,圓柱的側(cè)面展開圖是一個(gè)矩形,此矩形的長(zhǎng)等于圓柱底面周長(zhǎng),高等于圓柱的高,本題就是把圓柱的側(cè)面展開成矩形,“化曲面為平面”,用勾股定理解決.15、﹣1【解析】
根據(jù)“方程x2+(m2﹣1)x+1+m=0的兩根互為相反數(shù)”,利用一元二次方程根與系數(shù)的關(guān)系,列出關(guān)于m的等式,解之,再把m的值代入原方程,找出符合題意的m的值即可.【詳解】∵方程x2+(m2﹣1)x+1+m=0的兩根互為相反數(shù),∴1﹣m2=0,解得:m=1或﹣1,把m=1代入原方程得:x2+2=0,該方程無(wú)解,∴m=1不合題意,舍去,把m=﹣1代入原方程得:x2=0,解得:x1=x2=0,(符合題意),∴m=﹣1,故答案為﹣1.【點(diǎn)睛】本題考查了根與系數(shù)的關(guān)系,正確掌握一元二次方程兩根之和,兩個(gè)之積與系數(shù)之間的關(guān)系式解題的關(guān)鍵.若x1,x2為方程的兩個(gè)根,則x1,x2與系數(shù)的關(guān)系式:,.16、70°【解析】
試題分析:由平角的定義可知,∠1+∠2+∠3=180°,又∠1=∠2,∠3=40°,所以∠1=(180°-40°)÷2=70°,因?yàn)椋帷蝏,所以∠4=∠1=70°.故答案為70°.考點(diǎn):角的計(jì)算;平行線的性質(zhì).17、【解析】
可以取一點(diǎn)D(0,1),連接AD,作CN⊥AD于點(diǎn)N,PM⊥AD于點(diǎn)M,根據(jù)勾股定理可得AD=3,證明△APM∽△ADO得,PM=AP.當(dāng)CP⊥AD時(shí),CP+AP=CP+PM的值最小,最小值為CN的長(zhǎng).【詳解】如圖,取一點(diǎn)D(0,1),連接AD,作CN⊥AD于點(diǎn)N,PM⊥AD于點(diǎn)M,在Rt△AOD中,∵OA=2,OD=1,∴AD==3,∵∠PAM=∠DAO,∠AMP=∠AOD=90°,∴△APM∽△ADO,∴,即,∴PM=AP,∴PC+AP=PC+PM,∴當(dāng)CP⊥AD時(shí),CP+AP=CP+PM的值最小,最小值為CN的長(zhǎng).∵△CND∽△AOD,∴,即∴CN=.所以CP+AP的最小值為.故答案為:.【點(diǎn)睛】此題考查勾股定理,三角形相似的判定及性質(zhì),最短路徑問(wèn)題,如何找到AP的等量線段與線段CP相加是解題的關(guān)鍵,由此利用勾股定理、相似三角形做輔助線得到垂線段PM,使問(wèn)題得解.18、1【解析】
由拋物線y=x2-2x+m與x軸只有一個(gè)交點(diǎn)可知,對(duì)應(yīng)的一元二次方程x2-2x+m=2,根的判別式△=b2-4ac=2,由此即可得到關(guān)于m的方程,解方程即可求得m的值.【詳解】解:∵拋物線y=x2﹣2x+m與x軸只有一個(gè)交點(diǎn),∴△=2,∴b2﹣4ac=22﹣4×1×m=2;∴m=1.故答案為1.【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn)問(wèn)題,注:①拋物線與x軸有兩個(gè)交點(diǎn),則△>2;②拋物線與x軸無(wú)交點(diǎn),則△<2;③拋物線與x軸有一個(gè)交點(diǎn),則△=2.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、-1【解析】分析:根據(jù)零次冪、絕對(duì)值以及負(fù)指數(shù)次冪的計(jì)算法則求出各式的值,然后進(jìn)行求和得出答案.詳解:解:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1=1﹣3+(﹣1)+2=﹣1.點(diǎn)睛:本題主要考查的是實(shí)數(shù)的計(jì)算法則,屬于基礎(chǔ)題型.理解各種計(jì)算法則是解決這個(gè)問(wèn)題的關(guān)鍵.20、(1)12米;(2)(2+8)米【解析】
(1)設(shè)DE=x,先證明△ACE是直角三角形,∠CAE=60°,∠AEC=30°,得到AE=16,根據(jù)EF=8求出x的值得到答案;(2)延長(zhǎng)NM交DB延長(zhǎng)線于點(diǎn)P,先分別求出PB、CD得到PD,利用∠NDP=45°得到NP,即可求出MN.【詳解】(1)如圖,設(shè)DE=x,∵AB=DF=4,∠ACB=30°,∴AC=8,∵∠ECD=60°,∴△ACE是直角三角形,∵AF∥BD,∴∠CAF=30°,∴∠CAE=60°,∠AEC=30°,∴AE=16,∴Rt△AEF中,EF=8,即x﹣4=8,解得x=12,∴樹DE的高度為12米;(2)延長(zhǎng)NM交DB延長(zhǎng)線于點(diǎn)P,則AM=BP=6,由(1)知CD=CE=×AC=4,BC=4,∴PD=BP+BC+CD=6+4+4=6+8,∵∠NDP=45°,且∠NPD=90°,∴NP=PD=6+8,∴NM=NP﹣MP=6+8﹣4=2+8,∴食堂MN的高度為(2+8)米.【點(diǎn)睛】此題是解直角三角形的實(shí)際應(yīng)用,考查直角三角形的性質(zhì),30°角所對(duì)的直角邊等于斜邊的一半,銳角三角函數(shù),將已知的線段及角放在相應(yīng)的直角三角形中利用三角函數(shù)解題,由此做相應(yīng)的輔助線是解題的關(guān)鍵.21、(1)詳見解析;(2)4.【解析】試題分析:(1)連結(jié)OD,由AD平分∠BAC,OA=OD,可證得∠ODA=∠DAE,由平行線的性質(zhì)可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切線;(2)過(guò)點(diǎn)O作OF⊥AC于點(diǎn)F,由垂徑定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四邊形OFED是矩形,即可得DE=OF=4.試題解析:(1)連結(jié)OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC∴OE⊥DE∴DE是⊙O的切線;(2)過(guò)點(diǎn)O作OF⊥AC于點(diǎn)F,∴AF=CF=3,∴OF=,∵∠OFE=∠DEF=∠ODE=90°,∴四邊形OFED是矩形,∴DE=OF=4.考點(diǎn):切線的判定;垂徑定理;勾股定理;矩形的判定及性質(zhì).22、;.【解析】
(1)由正方形的性質(zhì)可求得B、C的坐標(biāo),代入拋物線解析式可求得b、c的值,則可求得拋物線的解析式;
(2)把拋物線解析式化為頂點(diǎn)式可求得D點(diǎn)坐標(biāo),再由S四邊形ABDC=S△ABC+S△BCD可求得四邊形ABDC的面積.【詳解】由已知得:,,把與坐標(biāo)代入得:,解得:,,則解析式為;∵,∴拋物線頂點(diǎn)坐標(biāo)為,則.【點(diǎn)睛】二次函數(shù)的綜合應(yīng)用.解題的關(guān)鍵是:在(1)中確定出B、C的坐標(biāo)是解題的關(guān)鍵,在(2)中把四邊形轉(zhuǎn)化成兩個(gè)三角形.23、(1)300;(2)見解析;(3)108°;(4)約有840名.【解析】
(1)根據(jù)A種類人數(shù)及其占總?cè)藬?shù)百分比可得答案;
(2)用總?cè)藬?shù)乘以B的百分比得出其人數(shù),即可補(bǔ)全條形圖;
(3)用360°乘以C類人數(shù)占總?cè)藬?shù)的比例可得;
(4)總?cè)藬?shù)乘以C、D兩類人數(shù)占樣本的比例可得答案.【詳解】解:(1)本次被調(diào)查的學(xué)生的人數(shù)為69÷23%=300(人),
故答案為:300;
(2)喜歡B類校本課程的人數(shù)為300×20%=60(人),
補(bǔ)全條形圖如下:
(3)扇形統(tǒng)計(jì)圖中,C類所在扇形的圓心角的度數(shù)為360°×=108°,
故答案為:108°;
(4)∵2000×=840,
∴估計(jì)該校喜愛C,D兩類校本課程的學(xué)生共有840名.【點(diǎn)睛】本題考查條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖的綜合運(yùn)用.讀懂統(tǒng)計(jì)圖,從統(tǒng)計(jì)圖中得到必要的信息是解題關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù).24、(1)證明見解析(2)【解析】
(1)連接OD,根據(jù)三角形的中位線定理可求出OD∥AC,根據(jù)切線的性質(zhì)可證明DE⊥OD,進(jìn)而得證.(2)連接AD,根據(jù)等腰三角形的性質(zhì)及三角函數(shù)的定義用OB表示出OF、CF的長(zhǎng),根據(jù)三角函數(shù)的定義求解.【詳解】解:(1)連接OD.∵DE是⊙O的切線,∴DE⊥OD,即∠ODE=90°.∵AB是⊙O的直徑,∴O是AB的中點(diǎn).又∵D是BC的中點(diǎn),.∴OD∥AC.∴∠DEC=∠ODE=90°.∴DE⊥AC.(2)連接AD.∵OD∥AC,∴.∵AB為⊙O的直徑,∴∠ADB=∠ADC=90°.又∵D為BC的中點(diǎn),∴AB=AC.∵sin∠ABC==,設(shè)AD=3x,則AB=AC=4x,OD=2x.∵DE⊥AC,∴∠ADC=∠AED=90°.∵∠DAC=∠EAD,∴△ADC∽△AED.∴.∴.∴.∴.∴.25、(1)AE=DF,AE⊥DF,理由見解析;(2)成立,CE:CD=或2;(3)【解析】試題分析:(1)根據(jù)正方形的性質(zhì),由SAS先證得△ADE≌△DCF.由全等三角形的性質(zhì)得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)有兩種情況:①當(dāng)AC=CE時(shí),設(shè)正方形ABCD的邊長(zhǎng)為a,由勾股定理求出AC=CE=a即可;②當(dāng)AE=AC時(shí),設(shè)正方形的邊長(zhǎng)為a,由勾股定理求出AC=AE=a,根據(jù)正方形的性質(zhì)知∠ADC=90°,然后根據(jù)等腰三角形的性質(zhì)得出DE=CD=a即可;(3)由(1)(2)知:點(diǎn)P的路徑是一段以AD為直徑的圓,設(shè)AD的中點(diǎn)為Q,連接QC交弧于點(diǎn)P,此時(shí)CP的長(zhǎng)度最大,再由勾股定理可得QC的長(zhǎng),再求CP即可.試題解析:(1)AE=DF,AE⊥DF,理由是:∵四邊形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵動(dòng)點(diǎn)E,F(xiàn)分別從D,C兩點(diǎn)同時(shí)出發(fā),以相同的速度在直線DC,CB上移動(dòng),∴DE=CF,在△ADE和△DCF中,∴,∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°-90°=90°,∴AE⊥DF;(2)(1)中的結(jié)論還成立,有兩種情況:①如圖1,當(dāng)AC=CE時(shí),設(shè)正方形ABCD的邊長(zhǎng)為a,由勾股定理得,,則;②如圖2,當(dāng)AE=AC時(shí),設(shè)正方形ABCD的邊長(zhǎng)為a,由勾股定理得:,∵四邊形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2;即CE:CD=或2;(3)∵點(diǎn)P在運(yùn)動(dòng)中保持∠APD=90°,∴點(diǎn)P的路徑是以AD為直徑的圓,如圖3,設(shè)AD的中點(diǎn)為Q,連接CQ并延長(zhǎng)交圓弧于點(diǎn)P,此時(shí)CP的長(zhǎng)度最大,∵在Rt△QDC中,∴,即線段CP的最大值是.點(diǎn)睛:此題主要考查了正方形的性質(zhì),勾股定理,圓周角定理,全等三角形的性質(zhì)與判定,等腰三角形的性質(zhì),三角形的內(nèi)角和定理,能綜合運(yùn)用性質(zhì)進(jìn)行推擠是解此題的關(guān)鍵,用了分類討論思想,難度偏大.26、(1)y=x2+2x﹣3;(2);(3)詳見解析.【解析】試題分析:(1)先利用拋物線的對(duì)稱性確定出點(diǎn)B的坐標(biāo),然后設(shè)拋物線的解析式為y=a(x+3)(x-1),將點(diǎn)D的坐標(biāo)代入求得a的值即可;(2)過(guò)點(diǎn)E作EF∥y軸,交AD與點(diǎn)F,過(guò)點(diǎn)C作CH⊥EF,垂足為H.設(shè)點(diǎn)E(m,m2+2m-3),則F(m,-m+1),則EF=-m2-3m+4,然后依據(jù)△ACE的面積=△EFA的面積-△EFC的面積列出三角形的面積與m的函數(shù)關(guān)系式,然后利用二次函數(shù)的性質(zhì)求得△ACE的最大值即可;(3)當(dāng)AD為平行四邊形的對(duì)角線時(shí).設(shè)點(diǎn)M的坐標(biāo)為(-1,a),點(diǎn)N的坐標(biāo)為(x,y),利用平行四邊形對(duì)角線互相平分的性質(zhì)可求得x的值,然后將x=-2代入求得對(duì)應(yīng)的y值,然后依據(jù)=,可求得a的值;當(dāng)AD為平行四邊形的邊時(shí).設(shè)點(diǎn)M的坐標(biāo)為(-1,a).則點(diǎn)N的坐標(biāo)為(-6,a+5)或(4,a-5),將點(diǎn)N的坐標(biāo)代入拋物線的解析式可求得a的值.試題解析:(1)∴A(1,0),拋物線的對(duì)稱軸為直線x=-1,∴B(-3,0),設(shè)拋物線的表達(dá)式為y=a(x+3)(x-1),將點(diǎn)D(-4,5)代入,得5a=5,解得a=1,∴拋物線的表達(dá)式為y=x2+2x-3;(2)過(guò)點(diǎn)E作EF∥y軸,交AD與點(diǎn)F,交x軸于點(diǎn)G,過(guò)點(diǎn)C作CH⊥EF,垂足為H.設(shè)點(diǎn)E(m,m2+2m-3),則F(m,-m+1).∴EF=-m+1-m2-2m+3=-m2-3m+4.∴S△ACE=S△EFA-S△EFC=EF·AG-EF·HC=EF·OA=-(m+)2+.∴△ACE的面積的最大值為;(3)當(dāng)AD為平行四邊形的對(duì)角線時(shí):設(shè)點(diǎn)M的坐標(biāo)為(-1,a),點(diǎn)N的坐標(biāo)為(x,y).∴平行四邊形的對(duì)角線互相平分,∴=,=,解得x=-2,y=5-a,將點(diǎn)N的坐標(biāo)代入拋物線的表達(dá)式,得5-a=-3,解得a=8,∴點(diǎn)M的坐標(biāo)為(-1,8),當(dāng)AD為平行四邊形的邊時(shí):設(shè)點(diǎn)M的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版?zhèn)€人房產(chǎn)銷售協(xié)議版B版
- 2024年版權(quán)質(zhì)押合同:文學(xué)作品版權(quán)質(zhì)押融資詳細(xì)規(guī)定
- 2023-2028年中國(guó)IP視訊行業(yè)市場(chǎng)深度分析及未來(lái)發(fā)展趨勢(shì)預(yù)測(cè)報(bào)告
- 2025年中國(guó)風(fēng)熱感冒顆粒行業(yè)市場(chǎng)調(diào)查研究及投資前景預(yù)測(cè)報(bào)告
- 天饋線分析儀行業(yè)市場(chǎng)發(fā)展及發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告
- 2021檔案員自我鑒定范文
- 島上書店讀后感15篇
- 自我介紹三年級(jí)作文300字集合九篇
- 高三年度工作計(jì)劃
- 同學(xué)邀請(qǐng)函合集6篇
- 倉(cāng)庫(kù)安全培訓(xùn)考試題及答案
- (正式版)SH∕T 3548-2024 石油化工涂料防腐蝕工程施工及驗(yàn)收規(guī)范
- (高清版)JTG 3370.1-2018 公路隧道設(shè)計(jì)規(guī)范 第一冊(cè) 土建工程
- 2024年中國(guó)雄安集團(tuán)招聘筆試參考題庫(kù)含答案解析
- 軟件開發(fā)含演示評(píng)分細(xì)則100分
- JGJ107-2016鋼筋機(jī)械連接技術(shù)規(guī)程培訓(xùn)宣貫
- 國(guó)際商務(wù)單證員考證總復(fù)習(xí)
- 公共事業(yè)管理概論(婁成武版)各章知識(shí)點(diǎn)歸納
- 機(jī)電設(shè)備安裝作業(yè)指導(dǎo)書
- 申克轉(zhuǎn)子秤安裝圖片指引ppt課件
- 山東昌樂(lè)二中“271高效課堂”教學(xué)模式
評(píng)論
0/150
提交評(píng)論