當(dāng)代市場(chǎng)調(diào)研 (原第12版)指導(dǎo)手冊(cè) Instructor Manual ch10 市場(chǎng)營(yíng)銷分析_第1頁(yè)
當(dāng)代市場(chǎng)調(diào)研 (原第12版)指導(dǎo)手冊(cè) Instructor Manual ch10 市場(chǎng)營(yíng)銷分析_第2頁(yè)
當(dāng)代市場(chǎng)調(diào)研 (原第12版)指導(dǎo)手冊(cè) Instructor Manual ch10 市場(chǎng)營(yíng)銷分析_第3頁(yè)
當(dāng)代市場(chǎng)調(diào)研 (原第12版)指導(dǎo)手冊(cè) Instructor Manual ch10 市場(chǎng)營(yíng)銷分析_第4頁(yè)
當(dāng)代市場(chǎng)調(diào)研 (原第12版)指導(dǎo)手冊(cè) Instructor Manual ch10 市場(chǎng)營(yíng)銷分析_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

McDaniel&Gates–MarketingResearch,12thEdition Instructor’sManual

Copyright?2021JohnWiley&Sons,Inc. 10-

CHAPTER10

MarketingAnalytics

LEARNINGOBJECTIVES

1.Understandwhat’sincludedinmarketinganalytics.

2.Reviewtechniquesforanalyzingdata.

3.Gainagreaterunderstandingofbigdata.

4.Exploredatamining.

5.Understanddifferencesinanalyticalforbigandlittledata.

6.Defineartificialintelligence,machinelearninganddeeplearning.

7.Outlinethekeyissuesregardingconsumerprivacy.

KEYTERMS

ArtificialintelligenceorAI

Backpropagation

Behavioraltargeting

Bigdata

CRISP-DMFramework

Datamining

Datavisualization

Deeplearning

Descriptiveanalytics

Machinelearning

Marketinganalytics

Marketingdashboard

Neuralnetworks

Predictiveanalytics

Prescriptiveanalytics

Surgepricing

CHAPTERSUMMARY

Thischapterwilllookatsomeofthetoolsthatenableresearcherstoanalyzeandgaininsightsfromalltypesofdata.Itbeginswithadiscussionofmarketinganalytics,whatitisandwhattheprocessis.Next,itdiscussesbigdata.Thisincludesitsbackground,howitworks,andnowtoanalyzeit.

Next,itdiscussesdescriptive,predictive,andprescriptiveanalytics.Afterthat,itdiscussesdatamining,artificialintelligence,machinelearning,anddeeplearning.Thechapterthistransitionsintobehavioraltargetingandsurgepricing.Next,itdiscussesdatavisualization.Aspartofthatdiscussion,itcoversinfographicsandmarketingdashboards.Itconcludeswithadiscussionofprivacyissues.

QUESTIONSFORREVIEWANDCRITICALTHINKING

Definemarketinganalytics.Whyisitsoimportanttocompanies?

AsdefinedinChapter1,marketinganalyticsisthediscovery,interpretation,andcommunicationofmeaningfulpatternsindata.Thisboilsdowntopredictionorclassificationandtheassociatedinsights.

Marketinganalyticsisimportantbecausecompanieshavetounderstandtheirmarketsinordertoproduceproductsorservicesthataredemandedbytheirmarketsandinordertobeabletorespondtochangesintheirmarket.

Namesometypesofinformationthatmightbefoundinanycompany’sdatabaseandthesourcesofthisinformation.

Anyinformationthefirmcollectsfromitscustomers,suppliers,andothersourcesislikelystoredintheirdatabase.Forexample,Visa,MasterCard,AmericanExpressandothershavemassivedatabaseswhereawiderangeofpurchasesfromretailstores,restaurants,hotels,airlines,onlineretailers,serviceorganizationsandsooncanbeassociatedwithspecificpurchasersaboutwhomthecreditcardcompanieshaveagreatdealofpersonalinformationcoveringage,gender,income,occupation,placeofresidence,andalltheotherinformationyouprovidewhenyoufilloutacreditcardapplication.

Whatismeantbythetermdatamining?Brieflyexplainhowitisdone.

Dataminingisanumbrellatermforanalytictechniquesthatfacilitatefastpatterndiscoveryandmodelbuilding,particularlywithlargedatasets.Thetermislooselyappliedtoanytypeoflarge-scaledataorinformationprocessingaswellasanyapplicationofartificialintelligence,machinelearning,ordeeplearning.Dataminingisperformedusingartificialintelligence,machinelearning,anddeeplearning.

IthasbeensaidthatBigDataanalyticsturnsthescientificmethodonitshead.Whatdoesthismean?

Thescientificmethodisatypeofresearchwhereaproblemisdescribed,relevantdataiscollected,aresearchhypothesis(orhypotheses)isformulated,andthenthehypothesisistestedempirically.Withbigdata,thedataiscollectedfirstandthenanalyzedtofind,notreallyhypotheses,butrathertofindanswerstoquestions.

Whyhasbehavioraltargetingbecomesopopularwithmarketers?Whyisitcontroversial?

Behavioraltargetingistheuseofonlineandofflinedatatounderstandaconsumer’shabits,demographics,andsocialnetworksinordertoincreasetheeffectivenessofonlineadvertising.Thisallowscompaniestoimprovetheirabilitytomarkettotheircustomers.Forexample,Amazonmakingrecommendationstoitscustomers.Behavioraltargetingiscontroversialbecauseoftheprivacyimplicationsandthewayssomeofthedataiscollectedonline.

Whatisdeeplearning?Howisitdifferentfrommachinelearning?HowdotheserelatetoAI?

Machinelearningiswheremachinescanlearnbyexperienceandacquireskillswithouthumaninvolvement.Deeplearningisasubsetofmachinelearningwhereartificialneuralnetworks,algorithmsinspiredbythehumanbrain,learnfromlargeamountsofdataasinmachinelearningbutnowweaddbackpropagationwheremachineslearnfromtheirmistakes.

Bothmachineanddeeplearningareimplementationsofartificialintelligence,wherewecanteachmachinestodothingsthattypicallyrequirehumanintelligence.

Inconnectionwithdeeplearning,whatisbackpropagation?

BackpropagationiswherethedeeplearningAIrealizesithasmadeanerrorandmakesadjustmenttoimprovepredictions.

Whatisdatavisualization?Whyisitimportant?

Datavisualizationconsistsofgraphictoolsthatmakedataunderstandabletoawideraudiencethanjustanalystsanddatascientists.Datavisualizationisimportantbecausehumansunderstanddatamuchquickerandbettervisuallythanbylookingatnumbers.

Whatisamarketingdashboard?Howcanitbeused?

Marketingdashboardsareareportingtoolthatprovidesacomprehensivesnapshotofperformance-basedanalytics,keyperformanceindicators(KPIs),andothermarketingmetrics.Itcanbeusedtovisuallypresentanymarketinginformationcollectedbythefirm.

Dividetheclassintogroupsoffourorfive.EachteamshouldgototheInternetandlookupBigDataanalytics.EachteamshouldthenreporttotheclassonhowaspecificcompanyiseffectivelyusingBigDatatoimprovetheirmarketingefficiency.

Studentresponseswillvary.

REAL-LIFERESEARCH

Case10.1AffiliatedParkingSystemsLookstoNewPricingApproach

KeyPoints

APSownsandoperatesover300parkinglotswithslightlyover33,000parkingplaces.

APShasbeenstruggling,searchingfornewideastoincreaserevenuesfromexistinglots.

APSiswonderingifsurgepricingcouldhelpthem.

APSisinterestedindoingallfeecollectionfromtotallyelectronicallytofurtherreducevariablecosts.

APSwantstovarypricingbasedonthelevelofdemandforparkinginrealtime.

Questions

WouldyousaythatBillisontherighttrackregardingtheneedforartificialintelligencetoimplementdynamicpricing?Whydoyousaythat?

Studentopinionswillvary.However,withafixedinventoryofparkingspaces,dynamicpricingoffersabouttheonlyoptiontheyhaveforincreasingrevenue.

Ifheweretopursuetheideafurther(heobviouslywouldneedhelpfromaconsultingfirm),whatdatawouldbeneededtoimplementsurgeordynamicpricing?

Sincetheyown300parkinglots,thisistheperfectopportunitytopilottest(e.g.testmarket)theconceptifthatisdesired.

Inordertoimplementsurgepricing,theywouldneedtoknowhowdemandvarieswithtime-of-day,day-of-week,andspecialevents.Theycouldbeginbycollectingdemandfromtheelectronicsystemsandattendants.Somelotshavemanualsystemsandthesewouldbeincompatiblewithbothdatacollectionandsurgepricingsotheywouldneedtobeupgradedforthesystemtowork.

Wouldmodelsbeneeded?Whatwouldthemodelsdo?Howmighttheybedeveloped?

Machinelearningwouldberequiredtomodeldemandandadjustpricingonanongoingbases,raisingpriceswithspacesareinhighdemandandloweringpriceswhenspacesareinlowdemand.

Describetheultimatesystemthatwouldbeneededintermsofinputsneeded,howthoseinputswouldbecaptured,modelsneeded(justageneralsenseofwhatthemodelswouldneedtodo),howpricingwouldbecommunicatedtoperspectiveusersandhowfeeswouldbecollected.Mappingitalloutinadiagramwithafewcommentsonwhatisoccurringateachstepisprobablyagoodapproachtoansweringthisquestion.

WhilethisinitiallysoundssimilartosurgepricingwithUber,itisactuallyverydifferent.WithUber,youagreeonthepriceaheado

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論