版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
黑龍江哈爾濱道外區(qū)重點名校2021-2022學年中考數(shù)學適應性模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.已知函數(shù)y=ax2+bx+c的圖象如圖所示,則關于x的方程ax2+bx+c﹣4=0的根的情況是A.有兩個相等的實數(shù)根 B.有兩個異號的實數(shù)根C.有兩個不相等的實數(shù)根 D.沒有實數(shù)根2.a(chǎn)、b是實數(shù),點A(2,a)、B(3,b)在反比例函數(shù)y=﹣的圖象上,則()A.a(chǎn)<b<0 B.b<a<0 C.a(chǎn)<0<b D.b<0<a3.某班組織了針對全班同學關于“你最喜歡的一項體育活動”的問卷調(diào)查后,繪制出頻數(shù)分布直方圖,由圖可知,下列結論正確的是()A.最喜歡籃球的人數(shù)最多 B.最喜歡羽毛球的人數(shù)是最喜歡乒乓球人數(shù)的兩倍C.全班共有50名學生 D.最喜歡田徑的人數(shù)占總人數(shù)的10%4.如圖,a∥b,點B在直線b上,且AB⊥BC,∠1=40°,那么∠2的度數(shù)()A.40° B.50° C.60° D.90°5.不等式組的解集在數(shù)軸上表示正確的是()A. B.C. D.6.如圖是小強用八塊相同的小正方體搭建的一個積木,它的左視圖是()A. B. C. D.7.一次函數(shù)與二次函數(shù)在同一平面直角坐標系中的圖像可能是()A. B. C. D.8.下列命題是真命題的是()A.如實數(shù)a,b滿足a2=b2,則a=bB.若實數(shù)a,b滿足a<0,b<0,則ab<0C.“購買1張彩票就中獎”是不可能事件D.三角形的三個內(nèi)角中最多有一個鈍角9.一個圓錐的底面半徑為,母線長為6,則此圓錐的側面展開圖的圓心角是()A.180° B.150° C.120° D.90°10.如圖,已知點P是雙曲線y=上的一個動點,連結OP,若將線段OP繞點O逆時針旋轉(zhuǎn)90°得到線段OQ,則經(jīng)過點Q的雙曲線的表達式為()A.y= B.y=﹣ C.y= D.y=﹣二、填空題(本大題共6個小題,每小題3分,共18分)11.一個圓錐的高為3,側面展開圖是半圓,則圓錐的側面積是_________12.已知一元二次方程x2-4x-3=0的兩根為m,n,則-mn+=.13.將數(shù)字37000000用科學記數(shù)法表示為_____.14.如圖,△ABC≌△ADE,∠EAC=40°,則∠B=_______°.15.某市政府為了改善城市容貌,綠化環(huán)境,計劃經(jīng)過兩年時間,使綠地面積增加44%,則這兩年平均綠地面積的增長率為______.16.如圖,在平面直角坐標系xOy中,△DEF可以看作是△ABC經(jīng)過若干次圖形的變化(平移、軸對稱、旋轉(zhuǎn))得到的,寫出一種由△ABC得到△DEF的過程:_____.三、解答題(共8題,共72分)17.(8分)如圖,AB為⊙O直徑,C為⊙O上一點,點D是的中點,DE⊥AC于E,DF⊥AB于F.(1)判斷DE與⊙O的位置關系,并證明你的結論;(2)若OF=4,求AC的長度.18.(8分)如圖,已知在⊙O中,AB是⊙O的直徑,AC=8,BC=1.求⊙O的面積;若D為⊙O上一點,且△ABD為等腰三角形,求CD的長.19.(8分)閱讀材料:各類方程的解法求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式.求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為解二元一次方程組.求解一元二次方程,把它轉(zhuǎn)化為兩個一元一次方程來解.求解分式方程,把它轉(zhuǎn)化為整式方程來解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數(shù)學思想轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.用“轉(zhuǎn)化”的數(shù)學思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過因式分解把它轉(zhuǎn)化為x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.問題:方程x3+x2-2x=0的解是x1=0,x2=,x3=;拓展:用“轉(zhuǎn)化”思想求方程的解;應用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點B,沿草坪邊沿BA,AD走到點P處,把長繩PB段拉直并固定在點P,然后沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C.求AP的長.20.(8分)如圖,在Rt△ABC的頂點A、B在x軸上,點C在y軸上正半軸上,且A(-1,0),B(4,0),∠ACB=90°.(1)求過A、B、C三點的拋物線解析式;(2)設拋物線的對稱軸l與BC邊交于點D,若P是對稱軸l上的點,且滿足以P、C、D為頂點的三角形與△AOC相似,求P點的坐標;(3)在對稱軸l和拋物線上是否分別存在點M、N,使得以A、O、M、N為頂點的四邊形是平行四邊形,若存在請直接寫出點M、點N的坐標;若不存在,請說明理由.圖1備用圖21.(8分)如圖,直線AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度數(shù).22.(10分)如今,旅游度假成為了中國人慶祝傳統(tǒng)春節(jié)的一項的“新年俗”,山西省旅發(fā)委發(fā)布的《2018年“春節(jié)”假日旅游市場總結分析報告》中稱:山西春節(jié)旅游供需兩旺,實現(xiàn)了“旅游接待”與“經(jīng)濟效益”的雙豐收,請根據(jù)圖表信息解決問題:(1)如圖1所示,山西近五年春節(jié)假日接待海內(nèi)外游客的數(shù)量逐年增加,2018年首次突破了“千萬”大關,達到萬人次,比2017年春節(jié)假日增加萬人次.(2)2018年2月15日﹣20日期間,山西省35個重點景區(qū)每日接待游客數(shù)量如下:日期2月15日(除夕)2月16日(初一)2月17日(初二)2月18日(初三)2月19日(初四)2月20日(初五)日接待游客數(shù)量(萬人次)7.5682.83119.5184.38103.2151.55這組數(shù)據(jù)的中位數(shù)是萬人次.(3)根據(jù)圖2中的信息預估:2019年春節(jié)假日山西旅游總收入比2018年同期增長的百分率約為,理由是.(4)春節(jié)期間,小明在“青龍古鎮(zhèn)第一屆新春廟會”上購買了A,B,C,D四枚書簽(除圖案外完全相同).正面分別印有“剪紙藝術”、“國粹京劇”、“陶瓷藝術”、“皮影戲”的圖案(如圖3),他將書簽背面朝上放在桌面上,從中隨機挑選兩枚送給好朋友,求送給好朋友的兩枚書簽中恰好有“剪紙藝術”的概率.23.(12分)在平面直角坐標系xOy中,拋物線y=12x(1)求直線BC的解析式;(2)點D在拋物線上,且點D的橫坐標為1.將拋物線在點A,D之間的部分(包含點A,D)記為圖象G,若圖象G向下平移t(t>0)個單位后與直線BC只有一個公共點,求t的取值范圍.24.已知關于x的方程(a﹣1)x2+2x+a﹣1=1.若該方程有一根為2,求a的值及方程的另一根;當a為何值時,方程的根僅有唯一的值?求出此時a的值及方程的根.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
根據(jù)拋物線的頂點坐標的縱坐標為4,判斷方程ax2+bx+c﹣4=0的根的情況即是判斷函數(shù)y=ax2+bx+c的圖象與直線y=4交點的情況.【詳解】∵函數(shù)的頂點的縱坐標為4,∴直線y=4與拋物線只有一個交點,∴方程ax2+bx+c﹣4=0有兩個相等的實數(shù)根,故選A.【點睛】本題考查了二次函數(shù)與一元二次方程,熟練掌握一元二次方程與二次函數(shù)間的關系是解題的關鍵.2、A【解析】解:∵,∴反比例函數(shù)的圖象位于第二、四象限,在每個象限內(nèi),y隨x的增大而增大,∵點A(2,a)、B(3,b)在反比例函數(shù)的圖象上,∴a<b<0,故選A.3、C【解析】【分析】觀察直方圖,根據(jù)直方圖中提供的數(shù)據(jù)逐項進行分析即可得.【詳解】觀察直方圖,由圖可知:A.最喜歡足球的人數(shù)最多,故A選項錯誤;B.最喜歡羽毛球的人數(shù)是最喜歡田徑人數(shù)的兩倍,故B選項錯誤;C.全班共有12+20+8+4+6=50名學生,故C選項正確;D.最喜歡田徑的人數(shù)占總人數(shù)的=8%,故D選項錯誤,故選C.【點睛】本題考查了頻數(shù)分布直方圖,從直方圖中得到必要的信息進行解題是關鍵.4、B【解析】分析:根據(jù)“平行線的性質(zhì)、平角的定義和垂直的定義”進行分析計算即可.詳解:∵AB⊥BC,∴∠ABC=90°,∵點B在直線b上,∴∠1+∠ABC+∠3=180°,∴∠3=180°-∠1-90°=50°,∵a∥b,∴∠2=∠3=50°.故選B.點睛:熟悉“平行線的性質(zhì)、平角的定義和垂直的定義”是正確解答本題的關鍵.5、C【解析】
分別求出每一個不等式的解集,根據(jù)口訣:大小小大中間找確定不等式組的解集,在數(shù)軸上表示時由包括該數(shù)用實心點、不包括該數(shù)用空心點判斷即可.【詳解】解:解不等式﹣x+7<x+3得:x>2,解不等式3x﹣5≤7得:x≤4,∴不等式組的解集為:2<x≤4,故選:C.【點睛】本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.6、D【解析】
左視圖從左往右,2列正方形的個數(shù)依次為2,1,依此得出圖形D正確.故選D.【詳解】請在此輸入詳解!7、D【解析】
本題可先由一次函數(shù)y=ax+c圖象得到字母系數(shù)的正負,再與二次函數(shù)y=ax2+bx+c的圖象相比較看是否一致.【詳解】A、一次函數(shù)y=ax+c與y軸交點應為(0,c),二次函數(shù)y=ax2+bx+c與y軸交點也應為(0,c),圖象不符合,故本選項錯誤;B、由拋物線可知,a>0,由直線可知,a<0,a的取值矛盾,故本選項錯誤;C、由拋物線可知,a<0,由直線可知,a>0,a的取值矛盾,故本選項錯誤;D、由拋物線可知,a<0,由直線可知,a<0,且拋物線與直線與y軸的交點相同,故本選項正確.故選D.【點睛】本題考查拋物線和直線的性質(zhì),用假設法來搞定這種數(shù)形結合題是一種很好的方法.8、D【解析】
A.兩個數(shù)的平方相等,這兩個數(shù)不一定相等,有正負之分即可判斷B.同號相乘為正,異號相乘為負,即可判斷C.“購買1張彩票就中獎”是隨機事件即可判斷D.根據(jù)三角形內(nèi)角和為180度,三個角中不可能有兩個以上鈍角即可判斷【詳解】如實數(shù)a,b滿足a2=b2,則a=±b,A是假命題;數(shù)a,b滿足a<0,b<0,則ab>0,B是假命題;若實“購買1張彩票就中獎”是隨機事件,C是假命題;三角形的三個內(nèi)角中最多有一個鈍角,D是真命題;故選:D【點睛】本題考查了命題與定理,根據(jù)實際判斷是解題的關鍵9、B【解析】
解:,解得n=150°.故選B.考點:弧長的計算.10、D【解析】
過P,Q分別作PM⊥x軸,QN⊥x軸,利用AAS得到兩三角形全等,由全等三角形對應邊相等及反比例函數(shù)k的幾何意義確定出所求即可.【詳解】過P,Q分別作PM⊥x軸,QN⊥x軸,∵∠POQ=90°,∴∠QON+∠POM=90°,∵∠QON+∠OQN=90°,∴∠POM=∠OQN,由旋轉(zhuǎn)可得OP=OQ,在△QON和△OPM中,,∴△QON≌△OPM(AAS),∴ON=PM,QN=OM,設P(a,b),則有Q(-b,a),由點P在y=上,得到ab=3,可得-ab=-3,則點Q在y=-上.故選D.【點睛】此題考查了待定系數(shù)法求反比例函數(shù)解析式,反比例函數(shù)圖象上點的坐標特征,以及坐標與圖形變化,熟練掌握待定系數(shù)法是解本題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、18π【解析】解:設圓錐的半徑為,母線長為.則解得12、1【解析】試題分析:由m與n為已知方程的解,利用根與系數(shù)的關系求出m+n=4,mn=﹣3,將所求式子利用完全平方公式變形后,即﹣mn+=﹣3mn=16+9=1.故答案為1.考點:根與系數(shù)的關系.13、3.7×107【解析】
根據(jù)科學記數(shù)法即可得到答案.【詳解】數(shù)字37000000用科學記數(shù)法表示為3.7×107.【點睛】本題主要考查了科學記數(shù)法的基本概念,解本題的要點在于熟知科學記數(shù)法的相關知識.14、1°【解析】
根據(jù)全等三角形的對應邊相等、對應角相等得到∠BAC=∠DAE,AB=AD,根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理計算即可.【詳解】∵△ABC≌△ADE,∴∠BAC=∠DAE,AB=AD,∴∠BAD=∠EAC=40°,∴∠B=(180°-40°)÷2=1°,故答案為1.【點睛】本題考查的是全等三角形的性質(zhì)和三角形內(nèi)角和定理,掌握全等三角形的對應邊相等、對應角相等是解題的關鍵.15、10%【解析】
本題可設這兩年平均每年的增長率為x,因為經(jīng)過兩年時間,讓市區(qū)綠地面積增加44%,則有(1+x)1=1+44%,解這個方程即可求出答案.【詳解】解:設這兩年平均每年的綠地增長率為x,根據(jù)題意得,
(1+x)1=1+44%,
解得x1=-1.1(舍去),x1=0.1.
答:這兩年平均每年綠地面積的增長率為10%.故答案為10%【點睛】此題考查增長率的問題,一般公式為:原來的量×(1±x)1=現(xiàn)在的量,增長用+,減少用-.但要注意解的取舍,及每一次增長的基礎.16、平移,軸對稱【解析】分析:根據(jù)平移的性質(zhì)和軸對稱的性質(zhì)即可得到由△OCD得到△AOB的過程.詳解:△ABC向上平移5個單位,再沿y軸對折,得到△DEF,故答案為:平移,軸對稱.點睛:考查了坐標與圖形變化-旋轉(zhuǎn),平移,軸對稱,解題時需要注意:平移的距離等于對應點連線的長度,對稱軸為對應點連線的垂直平分線,旋轉(zhuǎn)角為對應點與旋轉(zhuǎn)中心連線的夾角的大?。?、解答題(共8題,共72分)17、(1)DE與⊙O相切,證明見解析;(2)AC=8.【解析】(1)解:(1)DE與⊙O相切.證明:連接OD、AD,∵點D是的中點,∴=,∴∠DAO=∠DAC,∵OA=OD,∴∠DAO=∠ODA,∴∠DAC=∠ODA,∴OD∥AE,∵DE⊥AC,∴DE⊥OD,∴DE與⊙O相切.(2)連接BC,根據(jù)△ODF與△ABC相似,求得AC的長.AC=818、(1)25π;(2)CD1=,CD2=7【解析】分析:(1)利用圓周角定理的推論得到∠C是直角,利用勾股定理求出直徑AB,再利用圓的面積公式即可得到答案;(2)分點D在上半圓中點與點D在下半圓中點這兩種情況進行計算即可.詳解:(1)∵AB是⊙O的直徑,∴∠ACB=90°,∵AB是⊙O的直徑,∴AC=8,BC=1,∴AB=10,∴⊙O的面積=π×52=25π.(2)有兩種情況:①如圖所示,當點D位于上半圓中點D1時,可知△ABD1是等腰直角三角形,且OD1⊥AB,作CE⊥AB垂足為E,CF⊥OD1垂足為F,可得矩形CEOF,∵CE=,∴OF=CE=,∴,∵=,∴,∴,∴;②如圖所示,當點D位于下半圓中點D2時,同理可求.∴CD1=,CD2=7點睛:本題考查了圓周角定理的推論、勾股定理、矩形的性質(zhì)等知識.利用分類討論思想并合理構造輔助線是解題的關鍵.19、(1)-2,1;(2)x=3;(3)4m.【解析】
(1)因式分解多項式,然后得結論;
(2)兩邊平方,把無理方程轉(zhuǎn)化為整式方程,求解,注意驗根;
(3)設AP的長為xm,根據(jù)勾股定理和BP+CP=10,可列出方程,由于方程含有根號,兩邊平方,把無理方程轉(zhuǎn)化為整式方程,求解,【詳解】解:(1),,所以或或,,;故答案為,1;(2),方程的兩邊平方,得即或,,當時,,所以不是原方程的解.所以方程的解是;(3)因為四邊形是矩形,所以,設,則因為,,兩邊平方,得整理,得兩邊平方并整理,得即所以.經(jīng)檢驗,是方程的解.答:的長為.【點睛】考查了轉(zhuǎn)化的思想方法,一元二次方程的解法.解無理方程是注意到驗根.解決(3)時,根據(jù)勾股定理和繩長,列出方程是關鍵.20、見解析【解析】分析:(1)根據(jù)求出點的坐標,用待定系數(shù)法即可求出拋物線的解析式.(2)分兩種情況進行討論即可.(3)存在.假設直線l上存在點M,拋物線上存在點N,使得以A、O、M、N為頂點的四邊形為平行四邊形.分當平行四邊形是平行四邊形時,當平行四邊形AONM是平行四邊形時,當四邊形AMON為平行四邊形時,三種情況進行討論.詳解:(1)易證,得,∴OC=2,∴C(0,2),∵拋物線過點A(-1,0),B(4,0)因此可設拋物線的解析式為將C點(0,2)代入得:,即∴拋物線的解析式為(2)如圖2,當時,則P1(,2),當時,∴OC∥l,∴,∴P2H=·OC=5,∴P2(,5)因此P點的坐標為(,2)或(,5).(3)存在.假設直線l上存在點M,拋物線上存在點N,使得以A、O、M、N為頂點的四邊形為平行四邊形.如圖3,當平行四邊形是平行四邊形時,M(,),(,),當平行四邊形AONM是平行四邊形時,M(,),N(,),如圖4,當四邊形AMON為平行四邊形時,MN與OA互相平分,此時可設M(,m),則∵點N在拋物線上,∴-m=-·(-+1)(--4)=-,∴m=,此時M(,),N(-,-).綜上所述,M(,),N(,)或M(,),N(,)或M(,),N(-,-).點睛:屬于二次函數(shù)綜合題,考查相似三角形的判定與性質(zhì),待定系數(shù)法求二次函數(shù)解析式等,注意分類討論的思想方法在數(shù)學中的應用.21、50°.【解析】
試題分析:由平行線的性質(zhì)得到∠ABC=∠1=65°,∠ABD+∠BDE=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到結論.解:∵AB∥CD,∴∠ABC=∠1=65°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDE=180°﹣∠ABD=50°,∴∠2=∠BDE=50°.【點評】本題考查了平行線的性質(zhì)和角平分線定義等知識點,解此題的關鍵是求出∠ABD的度數(shù),題目較好,難度不大.22、(1)1365.45、414.4(2)93.79(3)30%;近3年平均漲幅在30%左右,估計2019年比2018年同比增長約30%(4)【解析】
(1)由圖1可得答案;(2)根據(jù)中位數(shù)的定義求解可得;(3)由近3年平均漲幅在30%左右即可做出估計;(4)根據(jù)題意先畫出樹狀圖,得出共有12種等可能的結果數(shù),再利用概率公式求解可得.【詳解】(1)2018年首次突破了“千萬”大關,達到1365.45萬人次,比2017年春節(jié)假日增加1365.45﹣951.05=414.4萬人次.故答案為:1365.45、414.4;(2)這組數(shù)據(jù)的中位數(shù)是=93.79萬人次,故答案為:93.79;(3)2019年春節(jié)假日山西旅游總收入比2018年同期增長的百分率約為30%,理由是:近3年平均漲幅在30%左右,估計2019年比2018年同比增長約30%,故答案為:30%;近3年平均漲幅在30%左右,估計2019年比2018年同比增長約30%.(4)畫樹狀圖如下:則共有12種等可能的結果數(shù),其中送給好朋友的兩枚書簽中恰好有“剪紙藝術”的結果數(shù)為6,所以送給好朋友的兩枚書簽中恰好有“剪紙藝術”的概率為.【點睛】本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數(shù)目m,求出概率,也考查了條形統(tǒng)計圖與樣本估計總體.23、(1)y=12x+1【解析】試題分析:(1)首先根據(jù)拋物線y=12x2-x+2求出與y軸交于點A,頂點為點B的坐標,然后求出點A關于拋物線的對稱軸對稱點C的坐標,設設直線BC的解析式為y=kx+b.代入點B,點C的坐標,然后解方程組即可;(2)求出點D、E、F的坐標,設點A平移后的對應點為點A',點D平移后的對
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 前列腺惡性腫瘤的健康宣教
- 勃起功能障礙的健康宣教
- T3鎮(zhèn)海煉化設備全生命周期管理制度
- 山西省呂梁市(2024年-2025年小學六年級語文)統(tǒng)編版階段練習(上學期)試卷及答案
- 山東省萊蕪市(2024年-2025年小學六年級語文)部編版開學考試(上學期)試卷及答案
- 商業(yè)航天產(chǎn)業(yè)發(fā)展現(xiàn)狀與趨勢
- 職業(yè)教育數(shù)字化轉(zhuǎn)型的策略及實施路徑
- 2024年集裝箱租賃運輸框架協(xié)議
- 2024年簡化版離婚合同范本版B版
- 2024智能家居產(chǎn)品采購與技術服務合同
- 部編人教版四年級數(shù)學上冊期末考試卷(可打印)
- 一例阿爾茨海默病患者的護理查房
- 農(nóng)貿(mào)市場安全生產(chǎn)工作方案
- 咸陽租房合同
- 《鋼筋保護層檢測》課件
- YJ-T 27-2024 應急指揮通信保障能力建設規(guī)范
- 合伙人協(xié)議書決策機制
- 西藏畜牧獸醫(yī)知識培訓課件
- 護理專業(yè)人才培養(yǎng)方案論證報告
- 我的家鄉(xiāng)武漢
- 眼鏡制造業(yè)灌膠機市場前景與機遇分析
評論
0/150
提交評論