版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省蘇州市吳江汾湖高級中學(xué)2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.直線與平行,則的值為()A. B.或 C.0 D.-2或02.已知數(shù)列的前項和為,若,對任意的正整數(shù)均成立,則()A.162 B.54 C.32 D.163.設(shè)是周期為4的奇函數(shù),當(dāng)時,,則()A. B. C. D.4.已知集合A={x︱x>-2}且,則集合B可以是()A.{x︱x2>4} B.{x︱}C.{y︱} D.5.若,則A. B. C. D.6.用表示不超過的最大整數(shù)(如,).數(shù)列滿足,若,則的所有可能值的個數(shù)為()A.1 B.2 C.3 D.47.要得到函數(shù)y=sin2x-πA.向左平行移動π3個單位 B.向右平行移動πC.向右平行移動π3個單位 D.向左平行移動π8.己知ΔABC中,角A,B,C所對的邊分別是a,b,c.若A=45°,B=30°,a=2,則bA.3-1 B.1 C.2 D.9.在棱長為1的正方體中,點在線段上運動,則下列命題錯誤的是()A.異面直線和所成的角為定值 B.直線和平面平行C.三棱錐的體積為定值 D.直線和平面所成的角為定值10.在中,A,B,C的對邊分別為a,b,c,,則的形狀一定是()A.直角三角形 B.等邊三角形 C.等腰三角形 D.等腰直角三角形二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)是等差數(shù)列的前項和,若,則________12.已知角滿足,則_____13.已知是等比數(shù)列,且,,那么________________.14.已知,,若,則實數(shù)________.15.有下列四個說法:①已知向量,,若與的夾角為鈍角,則;②先將函數(shù)的圖象上各點縱坐標(biāo)不變,橫坐標(biāo)縮小為原來的后,再將所得函數(shù)圖象整體向左平移個單位,可得函數(shù)的圖象;③函數(shù)有三個零點;④函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.其中正確的是__________.(填上所有正確說法的序號)16.?dāng)?shù)列滿足,(且),則數(shù)列的通項公式為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求的單調(diào)增區(qū)間;(2)當(dāng)時,求的最大值、最小值.18.已知,,,求:的值.19.已知等比數(shù)列的公比,且,.(1)求數(shù)列的通項公式;(2)設(shè),是數(shù)列的前項和,對任意正整數(shù)不等式恒成立,求的取值范圍.20.已知函數(shù)(1)求的值;(2)求的最大值和最小值.21.如圖,在多面體中,平面平面,四邊形為正方形,四邊形為梯形,且,,.(Ⅰ)求證:平面;(Ⅱ)求證:平面;(Ⅲ)在線段上是否存在點,使得平面?若存在,求出的值;若不存在,請說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
若直線與平行,則,解出a值后,驗證兩條直線是否重合,可得答案.【詳解】若直線與平行,
則,
解得或,
又時,直線與表示同一條直線,
故,
故選A.本題考查的知識點是直線的一般式方程,直線的平行關(guān)系,正確理解直線平行的幾何意義是解答的關(guān)鍵.2、B【解析】
由,得到數(shù)列表示公比為3的等比數(shù)列,求得,進(jìn)而利用,即可求解.【詳解】由,可得,所以數(shù)列表示公比為3的等比數(shù)列,又由,,得,解得,所以,所以故選B.【點睛】本題主要考查了等比數(shù)列的定義,以及數(shù)列中與之間的關(guān)系,其中解答中熟記等比數(shù)列的定義和與之間的關(guān)系是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.3、A【解析】
.故選A.4、D【解析】
A、B={x|x>2或x<-2},
∵集合A={x|x>-2},
∴A∪B={x|x≠-2}≠A,不合題意;
B、B={x|x≥-2},
∵集合A={x|x>-2},
∴A∪B={x|x≥-2}=B,不合題意;
C、B={y|y≥-2},
∵集合A={x|x>-2},
∴A∪B={x|x≥-2}=B,不合題意;
D、若B={-1,0,1,2,3},
∵集合A={x|x>-2},
∴A∪B={x|x>-2}=A,與題意相符,
故選D.5、B【解析】
分析:由公式可得結(jié)果.詳解:故選B.點睛:本題主要考查二倍角公式,屬于基礎(chǔ)題.6、C【解析】
數(shù)列取倒數(shù),利用累加法得到通項公式,再判斷的所有可能值.【詳解】兩邊取倒數(shù):利用累加法:為遞增數(shù)列.計算:,整數(shù)部分為0,整數(shù)部分為1,整數(shù)部分為2的所有可能值的個數(shù)為0,1,2答案選C【點睛】本題考查了累加法求數(shù)列和,綜合性強,意在考查學(xué)生對于新知識的閱讀理解能力,解決問題的能力,和計算能力.7、B【解析】
把y=sin【詳解】由題得y=sin所以要得到函數(shù)y=sin2x-π3的圖象,只要將函數(shù)故選:B【點睛】本題主要考查三角函數(shù)的圖像變換,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.8、B【解析】
由正弦定理可得.【詳解】∵asinA=故選B.【點睛】本題考查正弦定理,解題時直接應(yīng)用正弦定理可解題,本題屬于基礎(chǔ)題.9、D【解析】
結(jié)合條件和各知識點對四個選項逐個進(jìn)行分析,即可得解.【詳解】,在棱長為的正方體中,點在線段上運動易得平面,平面,,故這兩個異面直線所成的角為定值,故正確,直線和平面平行,所以直線和平面平行,故正確,三棱錐的體積還等于三棱錐的體積,而平面為固定平面且大小一定,,而平面點到平面的距離即為點到該平面的距離,三棱錐的體積為定值,故正確,由線面夾角的定義,令與的交點為,可得即為直線和平面所成的角,當(dāng)移動時這個角是變化的,故錯誤故選【點睛】本題考查了異面直線所成角的概念、線面平行及線面角等,三棱錐的體積的計算可以進(jìn)行頂點輪換及線面平行時,直線上任意一點到平面的距離都相等這一結(jié)論,即等體積法的轉(zhuǎn)換.10、A【解析】
利用平方化倍角公式和邊化角公式化簡得到,結(jié)合三角形內(nèi)角和定理化簡得到,即可確定的形狀.【詳解】化簡得即即是直角三角形故選A【點睛】本題考查了平方化倍角公式和正弦定理的邊化角公式,在化簡時,將邊化為角,使邊角混雜變統(tǒng)一,還有三角形內(nèi)角和定理的運用,這一點往往容易忽略.二、填空題:本大題共6小題,每小題5分,共30分。11、5【解析】
由等差數(shù)列的前和公式,求得,再結(jié)合等差數(shù)列的性質(zhì),即可求解.【詳解】由題意,根據(jù)等差數(shù)列的前和公式,可得,解得,又由等差數(shù)列的性質(zhì),可得.故答案為:.【點睛】本題主要考查了等差數(shù)列的性質(zhì),以及等差數(shù)列的前和公式的應(yīng)用,其中解答中熟記等差數(shù)列的性質(zhì),以及合理應(yīng)用等差數(shù)列的前和公式求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.12、【解析】
利用誘導(dǎo)公式以及兩角和與差的三角公式,化簡求解即可.【詳解】解:角滿足,可得
則.
故答案為:.【點睛】本題考查兩角和與差的三角公式,誘導(dǎo)公式的應(yīng)用,考查計算能力,是基礎(chǔ)題.13、【解析】
先根據(jù)等比數(shù)列性質(zhì)化簡方程,再根據(jù)平方性質(zhì)得結(jié)果.【詳解】∵是等比數(shù)列,且,,∴,即,則.【點睛】本題考查等比數(shù)列性質(zhì),考查基本求解能力.14、2或【解析】
根據(jù)向量平行的充要條件代入即可得解.【詳解】由有:,解得或.故答案為:2或.【點睛】本題考查了向量平行的應(yīng)用,屬于基礎(chǔ)題.15、②③④【解析】
根據(jù)向量,函數(shù)零點,函數(shù)的導(dǎo)數(shù),以及三角函數(shù)有關(guān)知識,對各個命題逐個判斷即可.【詳解】對①,若與的夾角為鈍角,則且與不共線,即,解得且,所以①錯誤;對②,先將函數(shù)的圖象上各點縱坐標(biāo)不變,橫坐標(biāo)縮小為原來的后,得函數(shù)的圖象,再將圖象整體向左平移個單位,可得函數(shù)的圖象,②正確;對③,函數(shù)的零點個數(shù),即解的個數(shù),亦即函數(shù)與的圖象的交點個數(shù),作出兩函數(shù)的圖象,如圖所示:由圖可知,③正確;對④,,當(dāng)時,,當(dāng)時,,故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,④正確.故答案為:②③④.【點睛】本題主要考查命題的真假判斷,涉及向量數(shù)量積,三角函數(shù)圖像變換,函數(shù)零點個數(shù)的求法,以及函數(shù)單調(diào)性的判斷等知識的應(yīng)用,屬于中檔題.16、【解析】
利用累加法和裂項求和得到答案.【詳解】當(dāng)時滿足故答案為【點睛】本題考查了數(shù)列的累加法,裂項求和法,意在考查學(xué)生對于數(shù)列公式和方法的靈活運用.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】
(1)首先利用三角函數(shù)恒等變換將化簡為,再求其單調(diào)增區(qū)間即可.(2)根據(jù),求出,再求的最值即可.【詳解】(1),.的單調(diào)增區(qū)間為.(2)因為,所以.所以.當(dāng)時,,當(dāng)時,.【點睛】本題主要考查三角函數(shù)恒等變換的應(yīng)用,同時考查三角函數(shù)的單調(diào)區(qū)間和最值,熟練掌握三角函數(shù)的公式為解題的關(guān)鍵,屬于中檔題.18、【解析】
求出和的取值范圍,利用同角三角函數(shù)的基本關(guān)系求出和的值,然后利用兩角差的余弦公式可求出的值.【詳解】,則,且,,,,,,,因此,.故答案為:.【點睛】本題考查利用兩角差的余弦公式求值,解題的關(guān)鍵就是利用已知角來表示所求角,考查計算能力,屬于中等題.19、(1);(2)【解析】
(1)由,,根據(jù)等比數(shù)列的通項公式可解得,,進(jìn)而可得答案;(2)根據(jù)錯位相減法求出,代入不等式得對任意正整數(shù)恒成立,設(shè),對分奇偶討論,可得答案.【詳解】(1)因為,所以.又因為,所以,,所以數(shù)列的通項公式為.(2)因為,所以,,兩式相減得,,所以.所以對任意正整數(shù)恒成立.設(shè),易知單調(diào)遞增.當(dāng)為奇數(shù)時,的最小值為,所以,解得;當(dāng)為偶數(shù)時,的最小值為,所以.綜上,,即的取值范圍是.【點睛】本題考查了求等比數(shù)列的通項公式,考查了錯位相減法求和,考查了數(shù)列的單調(diào)性,考查了不等式恒成立,屬于中檔題.20、(1);(2),.【解析】
(1)直接將值代入即可求得對應(yīng)的函數(shù)值.(2)將函數(shù)化簡為的形式,并求出最大值,最小值【詳解】(1).(2),當(dāng)時,取得最大值;當(dāng)時,取得最小值.【點睛】本題主要考查了求三角函數(shù)值、三角恒等變換以及三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.21、(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ)見解析【解析】
(Ⅰ)轉(zhuǎn)化為證明;(Ⅱ)轉(zhuǎn)化為證明,;(Ⅲ)根據(jù)線面平行的性質(zhì)定理.【詳解】(Ⅰ)因為四邊形為正方形,所以,由于平面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度高效離婚訴訟協(xié)議模板編制指南
- 兩人合伙購車法律合同范本2024版B版
- 二零二五年度農(nóng)民工就業(yè)合同范本(勞動權(quán)益保障)
- 2025年度智能倉儲車間租賃管理合同模板3篇
- 二零二五年度出租車租賃市場推廣與廣告合作協(xié)議4篇
- 二零二五年度初中學(xué)校紀(jì)律教育與安全防護(hù)協(xié)議書4篇
- 二零二五版樓層套房租賃合同書(含室內(nèi)空氣凈化服務(wù))4篇
- 2025年度能源企業(yè)常年法律顧問聘請合同3篇
- 2025年度體育館場地標(biāo)準(zhǔn)租賃與賽事宣傳推廣合同
- 2025年環(huán)保污水處理設(shè)施建設(shè)及運營合同4篇
- 2024年高考八省聯(lián)考地理適應(yīng)性試卷附答案解析
- 足浴技師與店內(nèi)禁止黃賭毒協(xié)議書范文
- 中國高血壓防治指南(2024年修訂版)要點解讀
- 2024-2030年中國光電干擾一體設(shè)備行業(yè)發(fā)展現(xiàn)狀與前景預(yù)測分析研究報告
- 湖南省岳陽市岳陽樓區(qū)2023-2024學(xué)年七年級下學(xué)期期末數(shù)學(xué)試題(解析版)
- 農(nóng)村自建房安全合同協(xié)議書
- 杜仲葉藥理作用及臨床應(yīng)用研究進(jìn)展
- 4S店售后服務(wù)6S管理新規(guī)制度
- 高性能建筑鋼材的研發(fā)與應(yīng)用
- 無線廣播行業(yè)現(xiàn)狀分析
- 漢語言溝通發(fā)展量表(長表)-詞匯及手勢(8-16月齡)
評論
0/150
提交評論