2025屆貴陽市高一下數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第1頁
2025屆貴陽市高一下數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第2頁
2025屆貴陽市高一下數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第3頁
2025屆貴陽市高一下數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第4頁
2025屆貴陽市高一下數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆貴陽市高一下數(shù)學期末質量跟蹤監(jiān)視模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知公式為正數(shù)的等比數(shù)列滿足:,,則前5項和()A.31 B.21 C.15 D.112.設P是所在平面內的一點,,則()A. B. C. D.3.法國學者貝特朗發(fā)現(xiàn),在研究事件A“在半徑為1的圓內隨機地取一條弦,其長度超過圓內接等邊三角形的邊長3”的概率的過程中,基于對“隨機地取一條弦”的含義的的不同理解,事件A的概率PA存在不同的容案該問題被稱為貝特朗悖論現(xiàn)給出種解釋:若固定弦的一個端點,另個端點在圓周上隨機選取,則PA.12 B.13 C.14.不等式的解集是A.或 B.或C. D.5.如圖,平行四邊形的對角線相交于點,是的中點,的延長線與相交于點,若,,,則()A. B. C. D.6.已知,,則的值域為()A. B.C. D.7.已知數(shù)列,滿足,若,則()A. B. C. D.8.().A. B. C. D.9.經(jīng)過,兩點的直線方程為()A. B. C. D.10.已知向量,,則與的夾角為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知等比數(shù)列的前項和為,,則的值是__________.12.在中,若,,,則________.13.中,內角、、所對的邊分別是、、,已知,且,,則的面積為_____.14._____________.15.《萊茵德紙草書》是世界上最古老的數(shù)學著作之一.書中有一道這樣的題目:把100個面包分給5個人,使每人所得份量成等差數(shù)列,且較大的三份之和的是較小的兩份之和,則最小一份的量為___.16.設點是角終邊上一點,若,則=____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列前項和(),數(shù)列等差,且滿足,前9項和為153.(1)求數(shù)列、的通項公式;(2)設,數(shù)列的前項和為,求及使不等式對一切都成立的最小正整數(shù)的值;(3)設,問是否存在,使得成立?若存在,求出m的值;若不存在,請說明理由.18.等差數(shù)列的各項均為正數(shù),,的前項和為,為等比數(shù)列,,且.(1)求與;(2)求數(shù)列的前項和.19.已知海島在海島北偏東,,相距海里,物體甲從海島以海里/小時的速度沿直線向海島移動,同時物體乙從海島沿著海島北偏西方向以海里/小時的速度移動.(1)問經(jīng)過多長時間,物體甲在物體乙的正東方向;(2)求甲從海島到達海島的過程中,甲、乙兩物體的最短距離.20.已知曲線上的任意一點到兩定點、距離之和為,直線交曲線于兩點,為坐標原點.(1)求曲線的方程;(2)若不過點且不平行于坐標軸,記線段的中點為,求證:直線的斜率與的斜率的乘積為定值;(3)若直線過點,求面積的最大值,以及取最大值時直線的方程.21.在等差數(shù)列中,.(Ⅰ)求的通項公式;(Ⅱ)求數(shù)列的前項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

由條件求出數(shù)列的公比.再利用等比數(shù)列的前項求和公式即可得出.【詳解】公比為正數(shù)的等比數(shù)列滿足:,則,即.所以,所以.故選:A【點睛】本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.2、B【解析】移項得.故選B3、B【解析】

由幾何概型中的角度型得:P(A)=2π【詳解】設固定弦的一個端點為A,則另一個端點在圓周上BC劣弧上隨機選取即可滿足題意,則P(A)=2π故選:B.【點睛】本題考查了幾何概型中的角度型,屬于基礎題.4、C【解析】

把原不等式化簡為,即可求解不等式的解集.【詳解】由不等式即,即,得,則不等式的解集為,故選C.【點睛】本題主要考查了一元二次不等式的求解,其中把不等式對應的一元二次方程能夠因式分解,即能夠轉化為幾個代數(shù)式的乘積形式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.5、B【解析】

先根據(jù)勾股定理判斷為直角三角形,且,,再根據(jù)三角形相似可得,然后由向量的加減的幾何意義以及向量的數(shù)量積公式計算即可.【詳解】,,,,為直角三角形,且,,平行行四邊形的對角線相交于點,是的中點,,,,,故選B.【點睛】本題主要考查向量的加減的幾何意義以及向量的數(shù)量積公式的應用.6、C【解析】

根據(jù)正弦型函數(shù)的周期性可求得最小正周期,從而可知代入即可求得所有函數(shù)值.【詳解】由題意得,最小正周期:;;;;;且值域為:本題正確選項:【點睛】本題考查正弦型函數(shù)值域問題的求解,關鍵是能夠確定函數(shù)的最小正周期,從而計算出一個周期內的函數(shù)值.7、C【解析】

利用遞推公式計算出數(shù)列的前幾項,找出數(shù)列的周期,然后利用周期性求出的值.【詳解】,且,,,,所以,,則數(shù)列是以為周期的周期數(shù)列,.故選:C.【點睛】本題考查利用數(shù)列遞推公式求數(shù)列中的項,推導出數(shù)列的周期是解本題的關鍵,考查分析問題和解決問題的能力,屬于中等題.8、D【解析】

運用誘導公式進行化簡,最后逆用兩角和的正弦公式求值即可.【詳解】,故本題選D.【點睛】本題考查了正弦的誘導公式,考查了逆用兩角和的正弦公式,考查了特殊角的正弦值.9、C【解析】

根據(jù)題目條件,選擇兩點式來求直線方程.【詳解】由兩點式直線方程可得:化簡得:故選:C【點睛】本題主要考查了直線方程的求法,還考查了運算求解的能力,屬于基礎題.10、D【解析】

利用夾角公式計算出兩個向量夾角的余弦值,進而求得兩個向量的夾角.【詳解】設兩個向量的夾角為,則,故.故選:D.【點睛】本小題主要考查兩個向量夾角的計算,考查向量數(shù)量積和模的坐標表示,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】

根據(jù)等比數(shù)列前項和公式,由可得,通過化簡可得,代入的值即可得結果.【詳解】∵,∴,顯然,∴,∴,∴,∴,故答案為1.【點睛】本題主要考查等比數(shù)列的前項和公式,本題解題的關鍵是看出數(shù)列的公比的值,屬于基礎題.12、2;【解析】

利用余弦定理可構造關于的方程,解方程求得結果.【詳解】由余弦定理得:解得:或(舍)本題正確結果:【點睛】本題考查利用余弦定理解三角形,屬于基礎題.13、【解析】

由正弦定理邊角互化思想結合兩角和的正弦公式得出,再利用余弦定理可求出、的值,然后利用三角形的面積公式可計算出的面積.【詳解】,由邊角互化思想得,即,,由余弦定理得,,所以,,因此,,故答案為.【點睛】本題考查正弦定理邊角互化思想的應用,考查利用余弦定理解三角形以及三角形面積公式的應用,解題時要結合三角形已知元素類型合理選擇正弦、余弦定理解三角形,考查運算求解能力,屬于中等題.14、【解析】,故填.15、【解析】

設此等差數(shù)列為{an},公差為d,則(a3+a4+a5)×=a1+a2,即,解得a1=,d=.最小一份為a1,故答案為.16、【解析】

根據(jù)任意角三角函數(shù)的定義,列方程求出m的值.【詳解】P(m,)是角終邊上的一點,∴r=;又,∴=,解得m=,,.故答案為.【點睛】本題考查了任意角三角函數(shù)的定義與應用問題,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2),;(3)11.【解析】

(1)由數(shù)列的前項和結合求得數(shù)列的通項公式,再由,可得為等差數(shù)列,由已知求出公差,代入等差數(shù)列的通項公式得答案;(2)把數(shù)列,的通項公式代入,然后利用裂項相消法求和,可得使不等式對一切都成立的最小正整數(shù)的值;(3)分為偶數(shù)和奇數(shù)分類分析得答案.【詳解】解:(1)由.故當時,.時,,而當時,,,又,即,為等差數(shù)列,于是.而,故,,因此,,即;(2)..易知單調遞增,由,得,而,故,;(3),①當為奇數(shù)時,為偶數(shù).此時,,,.②當為偶數(shù)時,為奇數(shù).此時,.,(舍去).綜上,存在唯一正整數(shù),使得成立.【點睛】本題考查數(shù)列遞推式,考查了等差關系的確定,訓練了裂項相消法求數(shù)列的和,考查數(shù)列的函數(shù)特性,體現(xiàn)了分類討論的數(shù)學思想方法,是中檔題.18、(1);(2)【解析】試題分析:(1)的公差為,的公比為,利用等比數(shù)列的通項公式和等差數(shù)列的前項和公式,由列出關于的方程組,解出的值,從而得到與的表達式.(2)根據(jù)數(shù)列的特點,可用錯位相減法求它的前項和,由(1)的結果知,兩邊同乘以2得由(1)(2)兩式兩邊分別相減,可轉化為等比數(shù)列的求和問題解決.試題解析:(1)設的公差為,的公比為,則為正整數(shù),,依題意有,即,解得或者(舍去),故.4分(2).6分,,兩式相減得8分,所以12分考點:1、等差數(shù)列和等比數(shù)列;2、錯位相減法求特數(shù)列的前項和.19、(1)小時;(2)海里.【解析】

試題分析:(1)設經(jīng)過小時,物體甲在物體乙的正東方向,因為小時,所以.則物體甲與海島的距離為海里,物體乙與海島距離為海里.在中由正弦定理可求得的值.(2)在中用余弦定理求,再根據(jù)二次函數(shù)求的最小值.試題解析:解:(1)設經(jīng)過小時,物體甲在物體乙的正東方向.如圖所示,物體甲與海島的距離為海里,物體乙與海島距離為海里,,中,由正弦定理得:,即,則.(2)由(1)題設,,,由余弦定理得:∵,∴當時,海里.考點:1正弦定理;2余弦定理;3二次函數(shù)求最值.20、(1)(2)證明見解析;(3)或【解析】

(1)利用橢圓的定義可知曲線為的橢圓,直接寫出橢圓的方程.(2)設直線,設,聯(lián)立直線方程與橢圓方程,通過韋達定理求解KOM,然后推出直線OM的斜率與的斜率的乘積為定值.(3)設直線方程是與橢圓方程聯(lián)立,根據(jù)面積公式,代入根與系數(shù)的關系,利用換元和基本不等式求最值.【詳解】(1)由題意知曲線是以原點為中心,長軸在軸上的橢圓,設其標準方程為,則有,所以,∴.(2)證明:設直線的方程為,設則由可得,即∴,∴,,,∴直線的斜率與的斜率的乘積=為定值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論