版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
阜陽市重點中學2025屆數(shù)學高一下期末檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.直線分別與軸,軸交于,兩點,點在圓上,則面積的取值范圍是()A. B. C. D.2.已知向量,且,則的值為()A.1 B.3 C.1或3 D.43.在北京召開的國際數(shù)學家大會的會標如圖所示,它是由個相同的直角三角形與中間的小正方形拼成的一個大正方形,若直角三角形中較小的銳角為,大正方形的面積是,小正方形的面積是,則()A. B. C. D.4.下列結論正確的是()A.若則; B.若,則C.若,則 D.若,則;5.已知等比數(shù)列{an}中,a3?a13=20,a6=4,則a10的值是()A.16 B.14 C.6 D.56.為了得到函數(shù)的圖像,只需把函數(shù)的圖像()A.向右平移個單位長度,再把各點的橫坐標伸長到原來的3倍;B.向左平移個單位長度,再把各點的橫坐標伸長到原來的3倍;C.向右平移個單位長度,再把各點的橫坐標縮短到原來的倍;D.向左平移個單位長度,再把各點的橫坐標縮短到原來的倍7.在某次測量中得到樣本數(shù)據(jù)如下:,若樣本數(shù)據(jù)恰好是樣本每個數(shù)都增加得到,則、兩樣本的下列數(shù)字特征對應相同的是()A.眾數(shù) B.中位數(shù) C.方差 D.平均數(shù)8.角的終邊經(jīng)過點,那么的值為()A. B. C. D.9.已知,下列不等式中成立的是()A. B. C. D.10.已知函數(shù)圖象的一條對稱軸是,則函數(shù)的最大值為()A.5 B.3 C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.觀察下列式子:你可歸納出的不等式是___________12.已知直線是函數(shù)(其中)圖象的一條對稱軸,則的值為________.13.用數(shù)學歸納法證明“”時,由不等式成立,推證時,則不等式左邊增加的項數(shù)共__項14.設,滿足約束條件,則的最小值是______.15.數(shù)列中,,以后各項由公式給出,則等于_____.16.函數(shù)在的值域是__________________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知正項等比數(shù)列滿足,,數(shù)列滿足.(1)求數(shù)列,的通項公式;(2)令,求數(shù)列的前項和;(3)若,且對所有的正整數(shù)都有成立,求的取值范圍.18.四棱錐中,,,底面,,直線與底面所成的角為,、分別是、的中點.(1)求證:直線平面;(2)若,求證:直線平面;(3)求棱錐的體積.19.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)在區(qū)間上的值域.20.已知以點(a∈R,且a≠0)為圓心的圓過坐標原點O,且與x軸交于點A,與y軸交于點B.(1)求△OAB的面積;(2)設直線l:y=﹣2x+4與圓C交于點P、Q,若|OP|=|OQ|,求圓心C到直線l的距離.21.從某居民區(qū)隨機抽取10個家庭,獲得第個家庭的月收入(單位:千元)與月儲蓄,(單位:千元)的數(shù)據(jù)資料,算出,附:線性回歸方程,其中為樣本平均值.(1)求家庭的月儲蓄對月收入的線性回歸方程;(2)若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
先求出AB的長,再求點P到直線AB的最小距離和最大距離,即得△ABP面積的最小值和最大值,即得解.【詳解】由題得,由題得圓心到直線AB的距離為,所以點P到直線AB的最小距離為2-1=1,最大距離為2+1=3,所以△ABP的面積的最小值為,最大值為.所以△ABP的面積的取值范圍為[1,3].故選D【點睛】本題主要考查點到直線的距離的計算,考查面積的最值問題,意在考查學生對這些知識的理解掌握水平和分析推理能力.2、B【解析】
先求出,再利用向量垂直的坐標表示得到關于的方程,從而求出.【詳解】因為,所以,因為,則,解得所以答案選B.【點睛】本題主要考查了平面向量的坐標運算,以及向量垂直的坐標表示,屬于基礎題.3、C【解析】
根據(jù)題意即可算出每個直角三角形的面積,再根據(jù)勾股定理和面積關系即可算出三角形的兩條直角邊.從而算出【詳解】由題意得直角三角形的面積,設三角形的邊長分別為,則有,所以,所以,選C.【點睛】本題主要考查了三角形的面積公式以及直角三角形中,正弦、余弦的計算,屬于基礎題.4、D【解析】
根據(jù)不等式的性質(zhì),結合選項,進行逐一判斷即可.【詳解】因,則當時,;當時,,故A錯誤;因,則或,故B錯誤;因,才有,條件不足,故C錯誤;因,則,則只能是,故D正確.故選:D.【點睛】本題考查不等式的基本性質(zhì),需要對不等式的性質(zhì)非常熟練,屬基礎題.5、D【解析】
用等比數(shù)列的性質(zhì)求解.【詳解】∵是等比數(shù)列,∴,∴.故選D.【點睛】本題考查等比數(shù)列的性質(zhì),靈活運用等比數(shù)列的性質(zhì)可以很快速地求解等比數(shù)列的問題.在等比數(shù)列中,正整數(shù)滿足,則,特別地若,則.6、B【解析】
根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結論.【詳解】把函數(shù)y=2sinx,x∈R的圖象上所有的點向左平移個單位長度,可得函數(shù)y=2sin(x)的圖象,再把所得各點的橫坐標伸長到原來的3倍(縱坐標不變),可得函數(shù)y=2sin(),x∈R的圖象,故選:B.【點睛】本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于中檔題.7、C【解析】
分別計算出、兩個樣本數(shù)據(jù)的眾數(shù)、中位數(shù)、方差和平均數(shù),再進行判斷?!驹斀狻繕颖镜臄?shù)據(jù)為:、、、、,沒有眾數(shù),中位數(shù)為,平均數(shù)為,方差為,樣本的數(shù)據(jù)為:、、、、,沒有眾數(shù),中位數(shù)為,平均數(shù)為,方差為,因此,兩個樣本數(shù)據(jù)的方差沒變,故選:D?!军c睛】本題考查樣本的數(shù)據(jù)特征,考查對樣本數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù)以及方差概念的理解,熟練利用相關公式計算這些數(shù)據(jù),是解本題的關鍵,屬于中等題。8、C【解析】,故選C。9、A【解析】
逐個選項進行判斷即可.【詳解】A選項,因為,所以.當時即不滿足選項B,C,D.故選A.【點睛】此題考查不等式的基本性質(zhì),是基礎題.10、B【解析】
函數(shù)圖象的一條對稱軸是,可得,解得.可得函數(shù),再利用輔助角公式、倍角公式、三角函數(shù)的有界性即可得出.【詳解】函數(shù)圖象的一條對稱軸是,,解得.則函數(shù)當時取等號.函數(shù)的最大值為1.故選.【點睛】本題主要考查三角函數(shù)的性質(zhì)應用以及利用二倍角公式和輔助角公式進行三角恒等變換.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
觀察三個已知式子的左邊和右邊,第1個不等式左邊可改寫成;第2個不等式左邊的可改寫成,右邊的可改寫成;第3個不等式的左邊可改寫成;據(jù)此可發(fā)現(xiàn)第個不等式的規(guī)律.【詳解】觀察三個已知式子的左邊和右邊,第1個式子可改寫為:,第2個式子可改寫為:,第3個式子可改寫為:,所以可歸納出第個不等式是:.故答案為:.【點睛】本題考查歸納推理,考查學生分析、解決問題的能力,屬于基礎題.12、【解析】
根據(jù)正弦函數(shù)圖象的對稱性可得,由此可得答案.【詳解】依題意得,所以,即,因為,所以或,故答案為:【點睛】本題考查了正弦函數(shù)圖象的對稱軸,屬于基礎題.13、【解析】
由題意有:由不等式成立,推證時,則不等式左邊增加的項數(shù)共項,得解.【詳解】解:當時,不等式左邊為,當時,不等式左邊為,則由不等式成立,推證時,則不等式左邊增加的項數(shù)共項,故答案為:.【點睛】本題考查了數(shù)學歸納法,重點考查了運算能力,屬基礎題.14、1【解析】
根據(jù)不等式組,畫出可行域,數(shù)形結合求解即可.【詳解】由題可知,可行域如下圖所示:容易知:,可得:,結合圖像可知,的最小值在處取得,則.故答案為:1.【點睛】本題考查線性規(guī)劃的基礎問題,只需作出可行域,數(shù)形結合即可求解.15、【解析】
可以利用前項的積與前項的積的關系,分別求得第三項和第五項,即可求解,得到答案.【詳解】由題意知,數(shù)列中,,且,則當時,;當時,,則,當時,;當時,,則,所以.【點睛】本題主要考查了數(shù)列的遞推關系式的應用,其中解答中熟練的應用遞推關系式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.16、【解析】
利用反三角函數(shù)的性質(zhì)及,可得答案.【詳解】解:,且,,∴,故答案為:【點睛】本題主要考查反三角函數(shù)的性質(zhì),相對簡單.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2);(3).【解析】
(1)設等比數(shù)列的公比為,則,根據(jù)條件可求出的值,利用等比數(shù)列的通項公式可求出,再由對數(shù)的運算可求出數(shù)列的通項公式;(2)求出數(shù)列的通項公式,然后利用錯位相減法求出數(shù)列的前項和為;(3)利用數(shù)列單調(diào)性的定義求出數(shù)列最大項的值為,由題意得出關于的不等式對任意的恒成立,然后利用參變量分離法得出,并利用基本不等式求出在時的最小值,即可得出實數(shù)的取值范圍.【詳解】(1)設等比數(shù)列的公比為,則,由可得,,,即,,解得,.;(2)由(1)可得,,可得,上式下式,得,因此,;(3),,,,即,則有.所以,數(shù)列是單調(diào)遞減數(shù)列,則數(shù)列的最大項為.由題意可知,關于的不等式對任意的恒成立,.由基本不等式可得,當且僅當時,等號成立,則在時的最小值為,,因此,實數(shù)的取值范圍是.【點睛】本題考查等比數(shù)列通項公式的求解,考查錯位相減求和法以及數(shù)列不等式恒成立問題,涉及數(shù)列最大項的問題,一般利用數(shù)列單調(diào)性的定義來求解,考查分析問題和解決問題的能力,屬于中等題.18、(1)見解析(2)見解析(3)【解析】
(1)由中位線定理可得,,再根據(jù)平行公理可得,,即可根據(jù)線面平行的判定定理證出;(2)根據(jù)題意可計算出,而是的中點,可得,又,即可根據(jù)線面垂直的判定定理證出;(3)根據(jù)等積法,即可求出.【詳解】(1)證明:連接,,,、是、中點,,從而.又平面,平面,直線平面;(2)證明:,,.底面,直線與底面成角,..是的中點,.,.面,面,直線平面;(3)由題可知,,.【點睛】本題主要考查線面平行的判定定理,線面垂直的判定定理的應用,以及利用等積法求三棱錐的體積,意在考查學生的直觀想象能力,邏輯推理能力和轉化能力,屬于基礎題.19、(1);(2)【解析】
(1)由二倍角公式,并結合輔助角公式可得,再利用周期可求出答案;(2)由的范圍,可求得的范圍,進而可求出的范圍,從而可求得的值域.【詳解】(1),∴函數(shù)的最小正周期為.(2)∵,∴,∴,∴,∴函數(shù)在區(qū)間的值域為.【點睛】本題考查三角函數(shù)的恒等變換,考查三角函數(shù)的周期及值域,考查學生的計算求解能力,屬于基礎題.20、(1)4(2)【解析】
(1)求得圓的半徑,設出圓的標準方程,由此求得兩點坐標,進而求得三角形的面積.(2)根據(jù),判斷出,由直線的斜率求得直線的斜率,以此列方程求得,根據(jù)直線和圓相交,圓心到直線的距離小于半徑,確定,同時得到圓心到直線的距離.【詳解】(1)根據(jù)題意,以點(a∈R,且a≠0)為圓心的圓過坐標原點O,設圓C的半徑為r,則r2=a2,圓C的方程為(x﹣a)2+(y)2=a2,令x=0可得:y=0或,則B(0,),令y=0可得:x=0或2a,則A(2a,0),△OAB的面積S|2a|×||=4;(2)根據(jù)題意,直線l:y=﹣2x+4與圓C交于點P、Q,則|CP|=|CQ|,又由|OP|=|OQ|,則直線OC與PQ垂直,又由直線l即PQ的方程為y=﹣2x+4,則KOC,解可得a=±2,當a=2時,圓心C的坐標為(2,1),圓心到直線l的距離d,r,r>d,此時直線l與圓相交,符合題意;當a=2時,圓心C的坐標為(﹣2,﹣1),圓心到直線l的距離d,r,r<d,此時直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度導演與動漫制作公司合作合同3篇
- 2024年苗圃技術員專項服務合同
- 2024年酒店早餐全面承包業(yè)務協(xié)議一
- 2024年版鐵路客運服務協(xié)議范本版B版
- 2024年貨物運輸與保險合同
- 2024年青島房地產(chǎn)交易協(xié)議樣本一
- 2024年采購招標流程代理協(xié)議規(guī)范版B版
- 2024某服裝品牌與設計師就品牌形象設計的合同
- 二零二五年大理石地暖材料供應與施工安裝合同2篇
- 黃金行業(yè)檢測培訓
- 知識創(chuàng)新與學術規(guī)范中國大學mooc課后章節(jié)答案期末考試題庫2023年
- 企業(yè)貸款書面申請書
- 人教五年級英語上冊2011版五年級英語上冊《Lesson17》教案及教學反思
- 交換機安裝調(diào)試記錄表實用文檔
- 理性思維作文素材800字(通用范文5篇)
- 應急物資清單明細表
- 房地產(chǎn)估計第八章成本法練習題參考
- 《社會主義核心價值觀》優(yōu)秀課件
- 《妊娠期糖尿病患者個案護理體會(論文)3500字》
- 《小學生錯別字原因及對策研究(論文)》
- 便攜式氣體檢測報警儀管理制度
評論
0/150
提交評論