寧夏回族自治區(qū)銀川市一中2024年高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第1頁
寧夏回族自治區(qū)銀川市一中2024年高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第2頁
寧夏回族自治區(qū)銀川市一中2024年高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第3頁
寧夏回族自治區(qū)銀川市一中2024年高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第4頁
寧夏回族自治區(qū)銀川市一中2024年高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

寧夏回族自治區(qū)銀川市一中2024年高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.甲、乙、丙三人隨意坐下,乙不坐中間的概率為()A. B. C. D.2.設(shè)等比數(shù)列的前項(xiàng)和為,若,,則()A.14 B.18 C.36 D.603.不等式的解集為,則不等式的解集為()A.或 B. C. D.或4.某校高一年級有男生540人,女生360人,用分層抽樣的方法從高一年級的學(xué)生中隨機(jī)抽取25名學(xué)生進(jìn)行問卷調(diào)查,則應(yīng)抽取的女生人數(shù)為()A.5 B.10 C.15 D.205.某幾何體的直觀圖如圖所示,是的直徑,垂直所在的平面,且,為上從出發(fā)繞圓心逆時(shí)針方向運(yùn)動(dòng)的一動(dòng)點(diǎn).若設(shè)弧的長為,的長度為關(guān)于的函數(shù),則的圖像大致為()A. B.C. D.6.已知直線與直線平行,則實(shí)數(shù)k的值為()A.-2 B.2 C. D.7.已知數(shù)列{an}為等差數(shù)列,,=1,若,則=()A.22019 B.22020 C.22017 D.220188.已知某路段最高限速60km/h,電子監(jiān)控測得連續(xù)6輛汽車的速度用莖葉圖表示如圖所示(單位:km/h),若從中任抽取2輛汽車,則恰好有1輛汽車超速的概率為()A. B. C. D.9.我國魏晉時(shí)期的數(shù)學(xué)家劉徽,創(chuàng)立了用圓內(nèi)接正多邊形面積無限逼近圓面積的方法,稱為“割圓術(shù)”,為圓周率的研究提供了科學(xué)的方法.在半徑為1的圓內(nèi)任取一點(diǎn),則該點(diǎn)取自圓內(nèi)接正十二邊形外的概率為A. B.C. D.10.已知函數(shù),則下列命題正確的是()①的最大值為2;②的圖象關(guān)于對稱;③在區(qū)間上單調(diào)遞增;④若實(shí)數(shù)m使得方程在上恰好有三個(gè)實(shí)數(shù)解,,,則;A.①② B.①②③ C.①③④ D.①②③④二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè),,則______.12.若函數(shù)圖象各點(diǎn)的橫坐標(biāo)縮短為原來的一半,再向左平移個(gè)單位,得到的函數(shù)圖象離原點(diǎn)最近的的對稱中心是______.13.直線與直線的交點(diǎn)為,則________.14.已知,則的最大值是____.15.函數(shù)的最小正周期是________16.已知等比數(shù)列{an}為遞增數(shù)列,且,則數(shù)列{an}的通項(xiàng)公式an=______________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列的前項(xiàng)和,且滿足.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)求數(shù)列的前項(xiàng)和.18.已知向量.(1)求函數(shù)的解析式及在區(qū)間上的值域;(2)求滿足不等式的的集合.19.已知數(shù)列滿足,.(1)證明:數(shù)列為等差數(shù)列;(2)求數(shù)列的前項(xiàng)和.20.近年來,某地大力發(fā)展文化旅游創(chuàng)意產(chǎn)業(yè),創(chuàng)意維護(hù)一處古寨,幾年來,經(jīng)統(tǒng)計(jì),古寨的使用年限x(年)和所支出的維護(hù)費(fèi)用y(萬元)的相關(guān)數(shù)據(jù)如圖所示,根據(jù)以往資料顯示y對x呈線性相關(guān)關(guān)系.(1)求出y關(guān)于x的回歸直線方程;(2)試根據(jù)(1)中求出的回歸方程,預(yù)測使用年限至少為幾年時(shí),維護(hù)費(fèi)用將超過10萬元?參考公式:對于一組數(shù)據(jù),,…,,其回歸方程的斜率和截距的最小二乘估計(jì)分別為.21.某體育老師隨機(jī)調(diào)查了100名同學(xué),詢問他們最喜歡的球類運(yùn)動(dòng),統(tǒng)計(jì)數(shù)據(jù)如表所示.已知最喜歡足球的人數(shù)等于最喜歡排球和最喜歡羽毛球的人數(shù)之和.最喜歡的球類運(yùn)動(dòng)足球籃球排球乒乓球羽毛球網(wǎng)球人數(shù)a201015b5(1)求的值;(2)將足球、籃球、排球統(tǒng)稱為“大球”,將乒乓球、羽毛球、網(wǎng)球統(tǒng)稱為“小球”.現(xiàn)按照喜歡大、小球的人數(shù)用分層抽樣的方式從調(diào)查的同學(xué)中抽取5人,再從這5人中任選2人,求這2人中至少有一人喜歡小球的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】甲、乙、丙三人隨意坐下有種結(jié)果,乙坐中間則有,乙不坐中間有種情況,概率為,故選A.點(diǎn)睛:有關(guān)古典概型的概率問題,關(guān)鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時(shí),用列舉法把所有基本事件一一列出時(shí),要做到不重復(fù)、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計(jì)數(shù)原理的正確使用.2、A【解析】

由已知結(jié)合等比數(shù)列的求和公式可求,,q2,然后整體代入到求和公式即可求.【詳解】∵等比數(shù)列{an}中,S2=2,S4=6,∴q≠1,則,聯(lián)立可得,2,q2=2,S62×(1﹣23)=1.故選:A.【點(diǎn)睛】本題主要考查了等比數(shù)列的求和公式的簡單應(yīng)用,考查了整體代入的運(yùn)算技巧,屬于基礎(chǔ)題.3、A【解析】不等式的解集為,的兩根為,,且,即,解得則不等式可化為解得故選4、B【解析】

利用分層抽樣的定義和方法求解即可.【詳解】設(shè)應(yīng)抽取的女生人數(shù)為,則,解得.故選B【點(diǎn)睛】本題主要考查分層抽樣的定義及方法,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.5、A【解析】如圖所示,設(shè),則弧長,線段,作于當(dāng)在半圓弧上運(yùn)動(dòng)時(shí),,,即,由余弦函數(shù)的性質(zhì)知當(dāng)時(shí),即運(yùn)動(dòng)到點(diǎn)時(shí)有最小值,只有選項(xiàng)適合,又由對稱性知選,故選A.6、A【解析】

由兩直線平行的可得:,運(yùn)算即可得解.【詳解】解:由兩直線平行的判定可得:,解得,故選:A.【點(diǎn)睛】本題考查利用兩直線平行求參數(shù),屬基礎(chǔ)題.7、A【解析】

根據(jù)等差數(shù)列的性質(zhì)和函數(shù)的性質(zhì)即可求出.【詳解】由題知∵數(shù)列{an}為等差數(shù)列,an≠1(n∈N*),a1+a2019=1,∴a1+a2019=a2+a2018=a3+a2017=…=a1009+a1011a1010=1,∴a1010∴f(a1)×f(a2)×…×f(a2019)=41009×(﹣2)=﹣1.故選A.【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì)和函數(shù)的性質(zhì),考查了運(yùn)算能力和轉(zhuǎn)化能力,屬于中檔題,注意:若{an}為等差數(shù)列,且m+n=p+q,則,性質(zhì)的應(yīng)用.8、A【解析】

求出基本事件的總數(shù),以及滿足題意的基本事件數(shù)目,即可求解概率.【詳解】解:由題意任抽取2輛汽車,其速度分別為:,共15個(gè)基本事件,其中恰好有1輛汽車超速的有,,共8個(gè)基本事件,則恰好有1輛汽車超速的概率為:,故選:A.【點(diǎn)睛】本題考查古典概型的概率的求法,屬于基本知識的考查.9、D【解析】

由半徑為1的圓內(nèi)接正十二邊形,可分割為12個(gè)頂角為,腰為1的等腰三角形,求得十二邊形的面積,利用面積比的幾何概型,即可求解.【詳解】由題意,半徑為1的圓內(nèi)接正十二邊形,可分割為12個(gè)頂角為,腰為1的等腰三角形,所以該正十二邊形的面積為,由幾何概型的概率計(jì)算公式,可得所求概率,故選D.【點(diǎn)睛】本題主要考查了幾何概型的概率的計(jì)算問題,解決此類問題的步驟:求出滿足條件A的基本事件對應(yīng)的“幾何度量”,再求出總的基本事件對應(yīng)的“幾何度量”,然后根據(jù)求解,著重考查了分析問題和解答問題的能力.10、C【解析】

,由此判斷①的正誤,根據(jù)判斷②的正誤,由求出的單調(diào)遞增區(qū)間,即可判斷③的正誤,結(jié)合的圖象判斷④的正誤.【詳解】因?yàn)?,故①正確因?yàn)椋盛诓徽_由得所以在區(qū)間上單調(diào)遞增,故③正確若實(shí)數(shù)m使得方程在上恰好有三個(gè)實(shí)數(shù)解,結(jié)合的圖象知,必有此時(shí),另一解為即,,滿足,故④正確綜上可知:命題正確的是①③④故選:C【點(diǎn)睛】本題考查的是三角函數(shù)的圖象及其性質(zhì),解決這類問題時(shí)首先應(yīng)把函數(shù)化成三角函數(shù)基本型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由,根據(jù)兩角差的正切公式可解得.【詳解】,故答案為【點(diǎn)睛】本題主要考查了兩角差的正切公式的應(yīng)用,屬于基礎(chǔ)知識的考查.12、【解析】

由二倍角公式化簡函數(shù)式,然后由三角函數(shù)圖象變換得新解析式,結(jié)合正弦函數(shù)性質(zhì)得對稱中心.【詳解】由題意,經(jīng)過圖象變換后新函數(shù)解析式為,由,,,絕對值最小的是,因此所求對稱中心為.故答案為:.【點(diǎn)睛】本題考查三角函數(shù)的圖象變換,考查正弦函數(shù)的性質(zhì),考查二倍角公式,掌握正弦函數(shù)性質(zhì)是解題關(guān)鍵.13、【解析】

(2,2)為直線和直線的交點(diǎn),即點(diǎn)(2,2)在兩條直線上,分別代入直線方程,即可求出a,b的值,進(jìn)而得a+b的值?!驹斀狻恳?yàn)橹本€與直線的交點(diǎn)為,所以,,即,,故.【點(diǎn)睛】本題考查求直線方程中的參數(shù),屬于基礎(chǔ)題。14、4【解析】

利用對數(shù)的運(yùn)算法則以及二次函數(shù)的最值化簡求解即可.【詳解】,,,則.當(dāng)且僅當(dāng)時(shí),函數(shù)取得最大值.【點(diǎn)睛】本題主要考查了對數(shù)的運(yùn)算法則應(yīng)用以及利用二次函數(shù)的配方法求最值.15、【解析】

先利用二倍角余弦公式對函數(shù)解析式進(jìn)行化簡整理,進(jìn)而利用三角函數(shù)最小正周期的公式求得函數(shù)的最小正周期.【詳解】解:f(x)=1﹣2sin2x=cos2x∴函數(shù)最小正周期Tπ故答案為π.【點(diǎn)睛】本題主要考查了二倍角的化簡和三角函數(shù)的周期性及其求法.考查了三角函數(shù)的基礎(chǔ)的知識的應(yīng)用.16、【解析】設(shè)數(shù)列的首項(xiàng)為,公比為q,則,所以,由得解得,因?yàn)閿?shù)列為遞增數(shù)列,所以,,所以考點(diǎn)定位:本題考查等比數(shù)列,意在考查考生對等比數(shù)列的通項(xiàng)公式的應(yīng)用能力三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】

(1)本題可令求出的值,然后令求出,即可求出數(shù)列的通項(xiàng)公式;(2)首先可令,然后根據(jù)錯(cuò)位相減法即可求出數(shù)列的前項(xiàng)和?!驹斀狻?1)當(dāng),,得.當(dāng)時(shí),,,兩式相減,得,化簡得,所以數(shù)列是首項(xiàng)為、公比為的等比數(shù)列,所以。(2)由(1)可知,令,則①,兩邊同乘以公比,得到②,由①②得:所以。【點(diǎn)睛】本題主要考查了數(shù)列通項(xiàng)的求法以及數(shù)列前項(xiàng)和的方法,求數(shù)列通項(xiàng)常用的方法有:累加法、累乘法、定義法、配湊法等;求數(shù)列前項(xiàng)和常用的方法有:錯(cuò)位相減法、裂項(xiàng)相消法、公式法、分組求和法等,屬于中等題。18、(1),值域?yàn)椋?)【解析】

(1)根據(jù)向量的數(shù)量積,得到函數(shù)解析式,再根據(jù)正弦函數(shù)的性質(zhì),即可得出結(jié)果;(2)先由題意,將不等式化為,結(jié)合正弦函數(shù)的性質(zhì),即可得出結(jié)果.【詳解】解:(1),由,得,,,在區(qū)間上的值域?yàn)椋?)由,得,即所以解得,的解集為【點(diǎn)睛】本題主要考查正弦型函數(shù)的值域,以及三角不等式,熟記正弦函數(shù)的性質(zhì)即可,屬于??碱}型.19、(1)證明見解析;(2)【解析】

(1)將已知條件湊配成,由此證得數(shù)列為等差數(shù)列.(2)由(1)求得數(shù)列的通項(xiàng)公式,進(jìn)而求得的表達(dá)式,利用分組求和法求得.【詳解】(1)證明:∵∴又∵∴所以數(shù)列是首項(xiàng)為1,公差為2的等差數(shù)列;(2)由(1)知,,所以.所以【點(diǎn)睛】本小題主要考查根據(jù)遞推關(guān)系式證明等差數(shù)列,考查分組求和法,屬于中檔題.20、(1)(2)使用年限至少為14年時(shí),維護(hù)費(fèi)用將超過10萬元【解析】

(1)由已知圖形中的數(shù)據(jù)求得與的值,則線性回歸方程可求;(2)直接由求得的范圍得答案.【詳解】(1),,,.故線性回歸方程為;(2)由,解得.故使用年限至少為14年時(shí),維護(hù)費(fèi)用將超過10萬元.【點(diǎn)睛】本題考查線性回歸方程的求法,考查計(jì)算能力,是基礎(chǔ)題.21、(1);(2)【解析】

(1)根據(jù)最喜歡足球的人數(shù)等于最喜歡排球和最喜歡羽毛球的人數(shù)之和,以及總?cè)藬?shù)列方程組求解;(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論