廣東省惠州市2025屆高一下數(shù)學期末學業(yè)水平測試模擬試題含解析_第1頁
廣東省惠州市2025屆高一下數(shù)學期末學業(yè)水平測試模擬試題含解析_第2頁
廣東省惠州市2025屆高一下數(shù)學期末學業(yè)水平測試模擬試題含解析_第3頁
廣東省惠州市2025屆高一下數(shù)學期末學業(yè)水平測試模擬試題含解析_第4頁
廣東省惠州市2025屆高一下數(shù)學期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省惠州市2025屆高一下數(shù)學期末學業(yè)水平測試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,,則向量在向量方向上的投影為()A. B. C. D.2.設(shè),則的大小關(guān)系為()A. B. C. D.3.已知扇形的半徑為,圓心角為,則該扇形的面積為()A. B. C. D.4.函數(shù)(且)的圖像是下列圖像中的()A. B.C. D.5.如圖,在中,面,,是的中點,則圖中直角三角形的個數(shù)是()A.5 B.6 C.7 D.86.已知向量,,若,則的值為()A. B.1 C. D.7.關(guān)于的不等式對一切實數(shù)都成立,則的取值范圍是()A. B. C. D.8.已知點O是邊長為2的正三角形ABC的中心,則()A. B. C. D.9.在△ABC中,角所對的邊分別為,且則最大角為()A. B. C. D.10.某正弦型函數(shù)的圖像如圖,則該函數(shù)的解析式可以為().A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,則________(用反三角函數(shù)表示)12.已知,且,則________.13.設(shè)為實數(shù),為不超過實數(shù)的最大整數(shù),如,.記,則的取值范圍為,現(xiàn)定義無窮數(shù)列如下:,當時,;當時,,若,則________.14.設(shè)不等式組所表示的平面區(qū)域為D.若直線與D有公共點,則實數(shù)a的取值范圍是_____________.15.若圓與圓的公共弦長為,則________.16.在中,,,則角_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.足球,有“世界第一運動的美譽,是全球體育界最具影響力的單項體育運動之一.足球傳球是足球運動技術(shù)之一,是比賽中組織進攻、組織戰(zhàn)術(shù)配合和進行射門的主要手段.足球截球也是足球運動技術(shù)的一種,是將對方控制或傳出的球占為己有,或破壞對方對球的控制的技術(shù),是比賽中由守轉(zhuǎn)攻的主要手段.這兩種運動技術(shù)都需要球運動員的正確判斷和選擇.現(xiàn)有甲、乙兩隊進行足球友誼賽,A、B兩名運動員是甲隊隊員,C是乙隊隊員,B在A的正西方向,A和B相距20m,C在A的正北方向,A和C相距14m.現(xiàn)A沿北偏西60°方向水平傳球,球速為10m/s,同時B沿北偏西30°方向以10m/s的速度前往接球,C同時也以10m/s的速度前去截球.假設(shè)球與B、C都在同一平面運動,且均保持勻速直線運動.(1)若C沿南偏西60°方向前去截球,試判斷B能否接到球?請說明理由.(2)若C改變(1)的方向前去截球,試判斷C能否球成功?請說明理由.18.從高三學生中抽出50名學生參加數(shù)學競賽,由成績得到如圖所示的頻率分布直方圖.利用頻率分布直方圖求:(1)這50名學生成績的眾數(shù)與中位數(shù);(2)這50名學生的平均成績.(答案精確到0.1)19.已知圓C的圓心為(1,1),直線與圓C相切.(1)求圓C的標準方程;(2)若直線過點(2,3),且被圓C所截得的弦長為2,求直線的方程.20.已知向量.(I)當實數(shù)為何值時,向量與共線?(II)若向量,且三點共線,求實數(shù)的值.21.已知數(shù)列滿足,.(1)證明:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(2)設(shè),數(shù)列的前n項和為,求使不等式<對一切恒成立的實數(shù)的范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

先計算向量夾角,再利用投影定義計算即可.【詳解】由向量,,則,,向量在向量方向上的投影為.故選:B【點睛】本題考查了向量數(shù)量積的坐標表示以及向量數(shù)量積的幾何意義,屬于基礎(chǔ)題.2、B【解析】

不難發(fā)現(xiàn)從而可得【詳解】,故選B.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較數(shù)大?。?、A【解析】

化圓心角為弧度值,再由扇形面積公式求解即可.【詳解】扇形的半徑為,圓心角為,即,該扇形的面積為,故選.【點睛】本題主要考查扇形的面積公式的應用.4、C【解析】

將函數(shù)表示為分段函數(shù)的形式,由此確定函數(shù)圖像.【詳解】依題意,.由此判斷出正確的選項為C.故選C.【點睛】本小題主要考查三角函數(shù)圖像的識別,考查分段函數(shù)解析式的求法,考查同角三角函數(shù)的基本關(guān)系式,屬于基礎(chǔ)題.5、C【解析】試題分析:因為面,所以,則三角形為直角三角形,因為,所以,所以三角形是直角三角形,易證,所以面,即,則三角形為直角三角形,即共有7個直角三角形;故選C.考點:空間中垂直關(guān)系的轉(zhuǎn)化.6、B【解析】

直接利用向量的數(shù)量積列出方程求解即可.【詳解】向量,,若,可得2﹣2=0,解得=1,故選B.【點睛】本題考查向量的數(shù)量積的應用,考查計算能力,屬于基礎(chǔ)題.7、D【解析】

特值,利用排除法求解即可.【詳解】因為當時,滿足題意,所以可排除選項B、C、A,故選D【點睛】不等式恒成立問題有兩個思路:求最值,說明恒成立參變分離,再求最值。8、B【解析】

直接由正三角形的性質(zhì)求出兩向量的模和夾角,由數(shù)量積定義計算.【詳解】∵點O是邊長為2的正三角形ABC的中心,∴,,∴.故選:B.【點睛】本題考查平面向量的數(shù)量積,掌握數(shù)量積的定義是解題關(guān)鍵.9、C【解析】

根據(jù)正弦定理可得三邊的比例關(guān)系;由大邊對大角可知最大,利用余弦定理求得余弦值,從而求得角的大小.【詳解】由正弦定理可得:設(shè),,最大為最大角本題正確選項:【點睛】本題考查正弦定理、余弦定理的應用,涉及到三角形中大邊對大角的關(guān)系,屬于基礎(chǔ)題.10、C【解析】試題分析:由圖象可得最大值為2,則A=2,周期,∴∴,又,是五點法中的第一個點,∴,∴把A,B排除,對于C:,故選C考點:本題考查函數(shù)的圖象和性質(zhì)點評:解決本題的關(guān)鍵是確定的值二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】∵,,∴.故答案為12、【解析】試題分析:由得:解方程組:得:或因為,所以所以不合題意,舍去所以,所以,答案應填:.考點:同角三角函數(shù)的基本關(guān)系和兩角差的三角函數(shù)公式.13、【解析】

根據(jù)已知條件,計算數(shù)列的前幾項,觀察得出無窮數(shù)列呈周期性變化,即可求出的值?!驹斀狻慨敃r,,,,,……,無窮數(shù)列周期性變化,周期為2,所以?!军c睛】本題主要考查學生的數(shù)學抽象能力,通過取整函數(shù)得到數(shù)列,觀察數(shù)列的特征,求數(shù)列中的某項值。14、【解析】

畫出不等式組所表示的平面區(qū)域,直線過定點,根據(jù)圖像確定直線斜率的取值范圍.【詳解】畫出不等式組所表示的平面區(qū)域如下圖所示,直線過定點,由圖可知,而,所以.故填:.【點睛】本小題主要考查不等式表示區(qū)域的畫法,考查直線過定點問題,考查直線斜率的取值范圍的求法,屬于基礎(chǔ)題.15、【解析】將兩個方程兩邊相減可得,即代入可得,則公共弦長為,所以,解之得,應填.16、或【解析】

本題首先可以通過解三角形面積公式得出的值,再根據(jù)三角形內(nèi)角的取值范圍得出角的值?!驹斀狻坑山馊切蚊娣e公式可得:即因為,所以或【點睛】在解三角形過程中,要注意求出來的角的值可能有多種情況。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)能接到;(2)不能接到【解析】

(1)在中由條件可得,,進一步可得為等邊三角形,然后計算運動到點所需時間即可判斷;(2)建立平面直角坐標系,作于,求出直線的方程,然后計算到直線的距離即可判斷.【詳解】(1)如圖所示,在中,,,,,,由題意可知,如果不運動,經(jīng)過,可以接到球,在上取點,使得,,為等邊三角形,,,隊員運動到點要,此時球運動了.所以能接到球.(2)建立如圖所示的平面直角坐標系,作于,所以直線的方程為:,經(jīng)過,運動了.點到直線的距離,所以以為圓心,半徑長為的圓與直線相離.故改變(1)的方向前去截球,不能截到球.【點睛】本題主要考查了三角形的實際應用,以及點到直線的距離的應用,考查了推理與運算能力,屬中檔題.18、(1)眾數(shù)為75分,中位數(shù)為分;(2)76.2分【解析】

(1)由眾數(shù)的概念及頻率分布直方圖可求得眾數(shù),根據(jù)中位數(shù)的概念可求得中位數(shù);.(2)由平均數(shù)的概念和頻率直方圖可求得平均數(shù).【詳解】(1)由眾數(shù)的概念及頻率分布直方圖可知,這50名學生成績的眾數(shù)為75分.因為數(shù)學競賽成績在的頻率為,數(shù)學競賽成績在的頻率為.所以中位數(shù)為.(2)這50名學生的平均成績?yōu)?【點睛】本題考查根據(jù)頻率直方圖求得數(shù)字特征,關(guān)鍵在于理解各數(shù)字特征的含義,屬于基礎(chǔ)題.19、(1);(2)或.【解析】

(1)利用點到直線的距離可得:圓心到直線的距離.根據(jù)直線與圓相切,可得.即可得出圓的標準方程.(2)①當直線的斜率存在時,設(shè)直線的方程:,即:,可得圓心到直線的距離,又,可得:.即可得出直線的方程.②當?shù)男甭什淮嬖跁r,,代入圓的方程可得:,解得可得弦長,即可驗證是否滿足條件.【詳解】(1)圓心到直線的距離.直線與圓相切,.圓的標準方程為:.(2)①當直線的斜率存在時,設(shè)直線的方程:,即:,,又,.解得:.直線的方程為:.②當?shù)男甭什淮嬖跁r,,代入圓的方程可得:,解得,可得弦長,滿足條件.綜上所述的方程為:或.【點睛】本題考查直線與圓的相切的性質(zhì)、點到直線的距離公式、弦長公式、分類討論方法,考查推理能力與計算能力,屬于中檔題.20、(1)(2)【解析】

(1)利用向量的運算法則、共線定理即可得出;(2)利用向量共線定理、平面向量基本定理即可得出.【詳解】(1)kk(1,0)﹣(2,1)=(k﹣2,﹣1).2(1,0)+2(2,1)=(5,2).∵k與2共線∴2(k﹣2)﹣(﹣1)×5=0,即2k﹣4+5=0,得k.(2)∵A、B、C三點共線,∴.∴存在實數(shù)λ,使得,又與不共線,∴,解得.【點睛】本題考查了向量的運算法則、共線定理、平面向量基本定理,屬于基礎(chǔ)題.21、(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論