版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省重點名校新高考仿真卷數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列為等比數(shù)列,若,且,則()A. B.或 C. D.2.已知函數(shù),其圖象關于直線對稱,為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點()A.先向左平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變B.先向右平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變C.先向右平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變D.先向左平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變3.已知雙曲線的一條漸近線傾斜角為,則()A.3 B. C. D.4.已知函數(shù)在上有兩個零點,則的取值范圍是()A. B. C. D.5.已知向量,,若,則()A. B. C. D.6.在滿足,的實數(shù)對中,使得成立的正整數(shù)的最大值為()A.5 B.6 C.7 D.97.設,,,則()A. B. C. D.8.年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級政府相繼啟動重大突發(fā)公共衛(wèi)生事件一級響應,全國人心抗擊疫情.下圖表示月日至月日我國新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯誤的是()A.月下旬新增確診人數(shù)呈波動下降趨勢B.隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù)C.月日至月日新增確診人數(shù)波動最大D.我國新型冠狀病毒肺炎累計確診人數(shù)在月日左右達到峰值9.下圖是民航部門統(tǒng)計的某年春運期間,六個城市售出的往返機票的平均價格(單位元),以及相比于上一年同期價格變化幅度的數(shù)據(jù)統(tǒng)計圖,以下敘述不正確的是()A.深圳的變化幅度最小,北京的平均價格最高B.天津的往返機票平均價格變化最大C.上海和廣州的往返機票平均價格基本相當D.相比于上一年同期,其中四個城市的往返機票平均價格在增加10.已知集合,,則集合子集的個數(shù)為()A. B. C. D.11.如圖,在平行四邊形中,為對角線的交點,點為平行四邊形外一點,且,,則()A. B.C. D.12.已知,,,則的大小關系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若,則___________.14.設P為有公共焦點的橢圓與雙曲線的一個交點,且,橢圓的離心率為,雙曲線的離心率為,若,則______________.15.已知,則__________.16.若展開式的二項式系數(shù)之和為64,則展開式各項系數(shù)和為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列的前n項和為,等比數(shù)列的前n項和為,且,,.(1)求數(shù)列與的通項公式;(2)求數(shù)列的前n項和.18.(12分)在直角坐標系中,點的坐標為,直線的參數(shù)方程為(為參數(shù),為常數(shù),且).以直角坐標系的原點為極點,軸的正半軸為極軸,且兩個坐標系取相等的長度單位,建立極坐標系,圓的極坐標方程為.設點在圓外.(1)求的取值范圍.(2)設直線與圓相交于兩點,若,求的值.19.(12分)設等差數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)求的前項和及使得最小的的值.20.(12分)某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數(shù)x與燒開一壺水所用時間y的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如表),得到了散點圖(如圖).表中,.(1)根據(jù)散點圖判斷,與哪一個更適宜作燒水時間y關于開關旋鈕旋轉的弧度數(shù)x的回歸方程類型?(不必說明理由)(2)根據(jù)判斷結果和表中數(shù)據(jù),建立y關于x的回歸方程;(3)若旋轉的弧度數(shù)x與單位時間內煤氣輸出量t成正比,那么x為多少時,燒開一壺水最省煤氣?附:對于一組數(shù)據(jù),,,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.21.(12分)已知拋物線,直線與交于,兩點,且.(1)求的值;(2)如圖,過原點的直線與拋物線交于點,與直線交于點,過點作軸的垂線交拋物線于點,證明:直線過定點.22.(10分)已知橢圓:()的離心率為,且橢圓的一個焦點與拋物線的焦點重合.過點的直線交橢圓于,兩點,為坐標原點.(1)若直線過橢圓的上頂點,求的面積;(2)若,分別為橢圓的左、右頂點,直線,,的斜率分別為,,,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)等比數(shù)列的性質可得,通分化簡即可.【詳解】由題意,數(shù)列為等比數(shù)列,則,又,即,所以,,.故選:A.【點睛】本題考查了等比數(shù)列的性質,考查了推理能力與運算能力,屬于基礎題.2、D【解析】
由函數(shù)的圖象關于直線對稱,得,進而得再利用圖像變換求解即可【詳解】由函數(shù)的圖象關于直線對稱,得,即,解得,所以,,故只需將函數(shù)的圖象上的所有點“先向左平移個單位長度,得再將橫坐標縮短為原來的,縱坐標保持不變,得”即可.故選:D【點睛】本題考查三角函數(shù)的圖象與性質,考查圖像變換,考查運算求解能力,是中檔題3、D【解析】
由雙曲線方程可得漸近線方程,根據(jù)傾斜角可得漸近線斜率,由此構造方程求得結果.【詳解】由雙曲線方程可知:,漸近線方程為:,一條漸近線的傾斜角為,,解得:.故選:.【點睛】本題考查根據(jù)雙曲線漸近線傾斜角求解參數(shù)值的問題,關鍵是明確直線傾斜角與斜率的關系;易錯點是忽略方程表示雙曲線對于的范圍的要求.4、C【解析】
對函數(shù)求導,對a分類討論,分別求得函數(shù)的單調性及極值,結合端點處的函數(shù)值進行判斷求解.【詳解】∵,.當時,,在上單調遞增,不合題意.當時,,在上單調遞減,也不合題意.當時,則時,,在上單調遞減,時,,在上單調遞增,又,所以在上有兩個零點,只需即可,解得.綜上,的取值范圍是.故選C.【點睛】本題考查了利用導數(shù)解決函數(shù)零點的問題,考查了函數(shù)的單調性及極值問題,屬于中檔題.5、A【解析】
利用平面向量平行的坐標條件得到參數(shù)x的值.【詳解】由題意得,,,,解得.故選A.【點睛】本題考查向量平行定理,考查向量的坐標運算,屬于基礎題.6、A【解析】
由題可知:,且可得,構造函數(shù)求導,通過導函數(shù)求出的單調性,結合圖像得出,即得出,從而得出的最大值.【詳解】因為,則,即整理得,令,設,則,令,則,令,則,故在上單調遞增,在上單調遞減,則,因為,,由題可知:時,則,所以,所以,當無限接近時,滿足條件,所以,所以要使得故當時,可有,故,即,所以:最大值為5.故選:A.【點睛】本題主要考查利用導數(shù)求函數(shù)單調性、極值和最值,以及運用構造函數(shù)法和放縮法,同時考查轉化思想和解題能力.7、A【解析】
先利用換底公式將對數(shù)都化為以2為底,利用對數(shù)函數(shù)單調性可比較,再由中間值1可得三者的大小關系.【詳解】,,,因此,故選:A.【點睛】本題主要考查了利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調性比較大小,屬于基礎題.8、D【解析】
根據(jù)新增確診曲線的走勢可判斷A選項的正誤;根據(jù)新增確診曲線與新增治愈曲線的位置關系可判斷B選項的正誤;根據(jù)月日至月日新增確診曲線的走勢可判斷C選項的正誤;根據(jù)新增確診人數(shù)的變化可判斷D選項的正誤.綜合可得出結論.【詳解】對于A選項,由圖象可知,月下旬新增確診人數(shù)呈波動下降趨勢,A選項正確;對于B選項,由圖象可知,隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù),B選項正確;對于C選項,由圖象可知,月日至月日新增確診人數(shù)波動最大,C選項正確;對于D選項,在月日及以前,我國新型冠狀病毒肺炎新增確診人數(shù)大于新增治愈人數(shù),我國新型冠狀病毒肺炎累計確診人數(shù)不在月日左右達到峰值,D選項錯誤.故選:D.【點睛】本題考查統(tǒng)計圖表的應用,考查數(shù)據(jù)處理能力,屬于基礎題.9、D【解析】
根據(jù)條形圖可折線圖所包含的數(shù)據(jù)對選項逐一分析,由此得出敘述不正確的選項.【詳解】對于A選項,根據(jù)折線圖可知深圳的變化幅度最小,根據(jù)條形圖可知北京的平均價格最高,所以A選項敘述正確.對于B選項,根據(jù)折線圖可知天津的往返機票平均價格變化最大,所以B選項敘述正確.對于C選項,根據(jù)條形圖可知上海和廣州的往返機票平均價格基本相當,所以C選項敘述正確.對于D選項,根據(jù)折線圖可知相比于上一年同期,除了深圳外,另外五個城市的往返機票平均價格在增加,故D選項敘述錯誤.故選:D【點睛】本小題主要考查根據(jù)條形圖和折線圖進行數(shù)據(jù)分析,屬于基礎題.10、B【解析】
首先求出,再根據(jù)含有個元素的集合有個子集,計算可得.【詳解】解:,,,子集的個數(shù)為.故選:.【點睛】考查列舉法、描述法的定義,以及交集的運算,集合子集個數(shù)的計算公式,屬于基礎題.11、D【解析】
連接,根據(jù)題目,證明出四邊形為平行四邊形,然后,利用向量的線性運算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點睛】本題考查向量的線性運算問題,屬于基礎題12、A【解析】
根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)的單調性,借助特殊值即可比較大小.【詳解】因為,所以.因為,所以,因為,為增函數(shù),所以所以,故選:A.【點睛】本題主要考查了指數(shù)函數(shù)、對數(shù)函數(shù)的單調性,利用單調性比較大小,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意,利用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性,利用函數(shù)奇偶性的性質求解即可.【詳解】因為函數(shù),其定義域為,所以其定義域關于原點對稱,又,所以函數(shù)為奇函數(shù),因為,所以.故答案為:【點睛】本題考查函數(shù)奇偶性的判斷及其性質;考查運算求解能力;熟練掌握函數(shù)奇偶性的判斷方法是求解本題的關鍵;屬于中檔題、??碱}型.14、【解析】設根據(jù)橢圓的幾何性質可得,根據(jù)雙曲線的幾何性質可得,,即故答案為15、【解析】
首先利用,將其兩邊同時平方,利用同角三角函數(shù)關系式以及倍角公式得到,從而求得,利用誘導公式求得,得到結果.【詳解】因為,所以,即,所以,故答案是.【點睛】該題考查的是有關三角函數(shù)化簡求值問題,涉及到的知識點有同角三角函數(shù)關系式,倍角公式,誘導公式,屬于簡單題目.16、1【解析】
由題意得展開式的二項式系數(shù)之和求出的值,然后再計算展開式各項系數(shù)的和.【詳解】由題意展開式的二項式系數(shù)之和為,即,故,令,則展開式各項系數(shù)的和為.故答案為:【點睛】本題考查了二項展開式的二項式系數(shù)和項的系數(shù)和問題,需要運用定義加以區(qū)分,并能夠運用公式和賦值法求解結果,需要掌握解題方法.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)設數(shù)列的公差為d,由可得,,由即可解得,故,由,即可解得,進而求得.(2)由(1)得,,利用分組求和及錯位相減法即可求得結果.【詳解】(1)設數(shù)列的公差為d,數(shù)列的公比為q,由可得,,整理得,即,故,由可得,則,即,故.(2)由(1)得,,,故,所以,數(shù)列的前n項和為,設①,則②,②①得,綜上,數(shù)列的前n項和為.【點睛】本題考查求等差等比的通項公式,考試分組求和及錯位相減法求數(shù)列的和,考查學生的計算能力,難度一般.18、(1)(2)【解析】
(1)首先將曲線化為直角坐標方程,由點在圓外,則解得即可;(2)將直線的參數(shù)方程代入圓的普通方程,設、對應的參數(shù)分別為,列出韋達定理,由及在圓的上方,得,即即可解得;【詳解】解:(1)曲線的直角坐標方程為.由點在圓外,得點的坐標為,結合,解得.故的取值范圍是.(2)由直線的參數(shù)方程,得直線過點,傾斜角為,將直線的參數(shù)方程代入,并整理得,其中.設、對應的參數(shù)分別為,則,.由及在圓的上方,得,即,代入①,得,,消去,得,結合,解得.故的值是.【點睛】本題考查極坐標方程化為直角坐標方程,直線的參數(shù)方程的幾何意義的應用,屬于中檔題.19、(1)(2);時,取得最小值【解析】
(1)設等差數(shù)列的公差為,由,結合已知,聯(lián)立方程組,即可求得答案.(2)由(1)知,故可得,即可求得答案.【詳解】(1)設等差數(shù)列的公差為,由及,得解得數(shù)列的通項公式為(2)由(1)知時,取得最小值.【點睛】本題解題關鍵是掌握等差數(shù)列通項公式和前項和公式,考查了分析能力和計算能力,屬于基礎題.20、(1)更適宜(2)(3)x為2時,燒開一壺水最省煤氣【解析】
(1)根據(jù)散點圖是否按直線型分布作答;(2)根據(jù)回歸系數(shù)公式得出y關于的線性回歸方程,再得出y關于x的回歸方程;(3)利用基本不等式得出煤氣用量的最小值及其成立的條件.【詳解】(1)更適宜作燒水時間y關于開關旋鈕旋轉的弧度數(shù)x的回歸方程類型.(2)由公式可得:,,所以所求回歸方程為.(3)設,則煤氣用量,當且僅當時取“”,即時,煤氣用量最小.故x為2時,燒開一壺水最省煤氣.【點睛】本題考查擬合模型的選擇,回歸方程的求解,涉及均值不等式的使用,屬綜合中檔題.21、(1);(2)見解析【解析】
(1)聯(lián)立直線和拋物線,消去可得,求出,,再代入弦長公式計算即可.(2)由(1)可得,設,計算直線的方程為,代入求出,即可求出,再代入拋物線方程,求出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 探戈舞課程設計
- 2024年體育賽事轉播權授權及收益分配協(xié)議3篇
- 泵站課程設計范例
- 粵嵌課程設計電子鋼琴
- 園林課程設計意義
- 2024年企業(yè)員工績效考核與薪酬調整協(xié)議3篇
- 2024年海水淡化打井施工合同范本
- 焊接叉課程設計
- 數(shù)字邏輯定時器課程設計
- 校園課程設計頁面
- 燃氣蒸汽聯(lián)合循環(huán)電廠汽輪機的運行特點
- 小學數(shù)學-數(shù)字編碼教學設計學情分析教材分析課后反思
- 《電力工程電纜設計規(guī)范》
- 石化企業(yè)污水處理設施典型事故案例分析課件
- 2023-2024學年四川省樂山市峨眉山市三年級數(shù)學第一學期期末統(tǒng)考模擬試題含答案
- 2023初一語文現(xiàn)代文閱讀理解及解析:《貓》
- 2023年6月福建省普通高中學生學業(yè)基礎會考物理試卷篇
- 11管理英語1試卷-036開放大學考試題庫 答案
- 合理低價法投標報價得分自動計算表
- GB/T 20564.4-2022汽車用高強度冷連軋鋼板及鋼帶第4部分:低合金高強度鋼
- TZJASE 005-2021 非道路移動柴油機械(叉車)排氣煙度 檢驗規(guī)則及方法
評論
0/150
提交評論