版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆陜西省渭南市潼關縣高一數(shù)學第二學期期末質量跟蹤監(jiān)視試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,是兩條不同的直線,,是兩個不同的平面,則下列說法正確的是()A.若,,則 B.若,,,則C.若,,則 D.若,,則2.已知數(shù)列是等差數(shù)列,數(shù)列滿足,的前項和用表示,若滿足,則當取得最大值時,的值為()A.16 B.15 C.14 D.133.設變量,滿足約束條件,則目標函數(shù)的最大值為()A. B. C. D.4.在△中,點是上一點,且,是中點,與交點為,又,則的值為()A. B. C. D.5.已知數(shù)列中,,則=()A. B. C. D.6.記等差數(shù)列前項和,如果已知的值,我們可以求得()A.的值 B.的值 C.的值 D.的值7.若,則t=()A.32 B.23 C.14 D.138.如圖,在正方體中,,分別是,中點,則異面直線與所成的角是()A. B. C. D.9.在中,角,,所對的邊分別為,,,若,則的值為()A. B. C. D.10.已知,則的值為()A. B.1 C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知角滿足,則_____12.已知數(shù)列從第項起每項都是它前面各項的和,且,則的通項公式是__________.13.已知橢圓的右焦點為,過點作圓的切線,若兩條切線互相垂直,則_____________.14.如圖1,動點在以為圓心,半徑為1米的圓周上運動,從最低點開始計時,用時4分鐘逆時針勻速旋轉一圈后停止.設點的縱坐標(米)關于時間(分)的函數(shù)為,則該函數(shù)的圖像大致為________.(請注明關鍵點)15.利用數(shù)學歸納法證明不等式“”的過程中,由“”變到“”時,左邊增加了_____項.16.將2本不同的數(shù)學書和1本語文書在書架上隨機排成一行,則2本數(shù)學書相鄰的概率為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設是一個公比為q的等比數(shù)列,且,,成等差數(shù)列.(1)求q;(2)若數(shù)列前4項的和,令,求數(shù)列的前n項和.18.在某市高三教學質量檢測中,全市共有名學生參加了本次考試,其中示范性高中參加考試學生人數(shù)為人,非示范性高中參加考試學生人數(shù)為人.現(xiàn)從所有參加考試的學生中隨機抽取人,作檢測成績數(shù)據(jù)分析.(1)設計合理的抽樣方案(說明抽樣方法和樣本構成即可);(2)依據(jù)人的數(shù)學成績繪制了如圖所示的頻率分布直方圖,據(jù)此估計本次檢測全市學生數(shù)學成績的平均分;19.設數(shù)列是公差為2的等差數(shù)列,數(shù)列滿足,,.(1)求數(shù)列、的通項公式;(2)求數(shù)列的前項和;(3)設數(shù)列,試問是否存在正整數(shù),,使,,成等差數(shù)列?若存在,求出,的值;若不存在,請說明理由.20.某消費者協(xié)會在3月15號舉行了以“攜手共治,暢享消費”為主題的大型宣傳咨詢服務活動,著力提升消費者維權意識.組織方從參加活動的1000名群眾中隨機抽取n名群眾,按他們的年齡分組:第1組,第2組,第3組,第4組,第5組,其中第1組有6人,得到的頻率分布直方圖如圖所示.(1)求m,n的值,并估計抽取的n名群眾中年齡在的人數(shù);(2)已知第1組群眾中男性有2人,組織方要從第1組中隨機抽取3名群眾組成維權志愿者服務隊,求至少有兩名女生的概率.21.已知以點(a∈R,且a≠0)為圓心的圓過坐標原點O,且與x軸交于點A,與y軸交于點B.(1)求△OAB的面積;(2)設直線l:y=﹣2x+4與圓C交于點P、Q,若|OP|=|OQ|,求圓心C到直線l的距離.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
試題分析:,是兩條不同的直線,,是兩個不同的平面,在A中:若,,則,相交、平行或異面,故A錯誤;在B中:若,,,則,相交、平行或異面,故B錯誤;在C中:若,,則或,故C誤;在D中:若,,由面面平行的性質定理知,,故D正確.考點:空間中直線、平面之間的位置關系.2、A【解析】
設等差數(shù)列的公差為,根據(jù)得到,推出,判斷出當時,;時,;再根據(jù),判斷出對取正負的影響,進而可得出結果.【詳解】設等差數(shù)列的公差為,因為數(shù)列是等差數(shù)列,,所以,因此,所以,所以,,因此,當時,;時,,因為,所以當時,,當時,,當時,,當時,因為,所以;因為所以,當時,取得最大值.故選:A【點睛】本題主要考查等差數(shù)列的應用,熟記等差數(shù)列的性質,及其函數(shù)特征即可,屬于??碱}型.3、C【解析】
作出可行域,利用平移法即可求出.【詳解】作出不等式組表示的平面區(qū)域,如圖所示:當直線平移至經(jīng)過直線與直線的交點時,取得最大值,.故選:C.【點睛】本題主要考查簡單線性規(guī)劃問題的解法應用,屬于基礎題.4、D【解析】試題分析:因為三點共線,所以可設,又,所以,,將它們代入,即有,由于不共線,從而有,解得,故選擇D.考點:向量的基本運算及向量共線基本定理.5、B【解析】
,故選B.6、C【解析】
設等差數(shù)列{an}的首項為a1,公差為d,由a5+a21=2a1+24d的值為已知,再利用等差數(shù)列的求和公式,即可得出結論.【詳解】設等差數(shù)列{an}的首項為a1,公差為d,∵已知a5+a21的值,∴2a1+24d的值為已知,∴a1+12d的值為已知,∵∴我們可以求得S25的值.故選:C.【點睛】本題考查等差數(shù)列的通項公式與求和公式的應用,考查學生的計算能力,屬于中檔題.7、B【解析】
先計算得到,再根據(jù)得到等式解得答案.【詳解】故答案選B【點睛】本題考查了向量的計算,意在考查學生對于向量運算法則的靈活運用及計算能力.8、D【解析】
如圖,平移直線到,則直線與直線所成角,由于點都是中點,所以,則,而,所以,即,應選答案D.9、B【解析】
化簡式子得到,利用正弦定理余弦定理原式等于,代入數(shù)據(jù)得到答案.【詳解】利用正弦定理和余弦定理得到:故選B【點睛】本題考查了正弦定理,余弦定理,三角恒等變換,意在考查學生的計算能力.10、B【解析】
化為齊次分式,分子分母同除以,化弦為切,即可求解.【詳解】.故選:B.【點睛】本題考查已知三角函數(shù)值求值,通過齊次分式化弦為切,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用誘導公式以及兩角和與差的三角公式,化簡求解即可.【詳解】解:角滿足,可得
則.
故答案為:.【點睛】本題考查兩角和與差的三角公式,誘導公式的應用,考查計算能力,是基礎題.12、【解析】
列舉,可找到是從第項起的等比數(shù)列,由首項和公比即可得出通項公式.【詳解】解:,即,所以是從第項起首項,公比的等比數(shù)列.通項公式為:故答案為:【點睛】本題考查數(shù)列的通項公式,可根據(jù)遞推公式求出.13、【解析】
首先分析直線與圓的位置關系,然后結合已知可判斷四邊形的形狀,得出的比值,最后得到答案.【詳解】設切點為,根據(jù)已知兩切線垂直,四邊形是正方形,,根據(jù),可得.故填:.【點睛】本題考查了直線與圓的幾何性質,以及橢圓的性質,考查了轉化與化歸的能力,屬于基礎題型.14、【解析】
根據(jù)題意先得出,再畫圖.【詳解】解:設,,,,,則當時,處于最低點,則,,可畫圖為:故答案為:【點睛】本題考查了三角模型的實際應用,關鍵是根據(jù)題意建立函數(shù)模型,屬中檔題.15、.【解析】
分析題意,根據(jù)數(shù)學歸納法的證明方法得到時,不等式左邊的表示式是解答該題的突破口,當時,左邊,由此將其對時的式子進行對比,得到結果.【詳解】當時,左邊,當時,左邊,觀察可知,增加的項數(shù)是,故答案是.【點睛】該題考查的是有關數(shù)學歸納法的問題,在解題的過程中,需要明確式子的形式,正確理解對應式子中的量,認真分析,明確哪些項是添的,得到結果.16、【解析】2本不同的數(shù)學書和1本語文書在書架上隨機排成一行,所有的基本事件有(數(shù)學1,數(shù)學2,語文),(數(shù)學1,語文,數(shù)學2),(數(shù)學2,數(shù)學1,語文),(數(shù)學2,語文,數(shù)學1),(語文,數(shù)學1,數(shù)學2),(語文,數(shù)學2,數(shù)學1)共6個,其中2本數(shù)學書相鄰的有(數(shù)學1,數(shù)學2,語文),(數(shù)學2,數(shù)學1,語文),(語文,數(shù)學1,數(shù)學2),(語文,數(shù)學2,數(shù)學1)共4個,故2本數(shù)學書相鄰的概率.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)答案不唯一,詳見解析.【解析】
(1)運用等差中項性質和等比數(shù)列的通項公式,解方程可得公比;(2)討論公比,結合等差數(shù)列和等比數(shù)列的求和公式,以及錯位相減法求和,即可得到所求和.【詳解】(1)因為是一個公比為的等比數(shù)列,所以.因為成等差數(shù)列,所以即.解得.(2)①若q=2,又它的前4和,得,解得所以.因為,∴,2,∴,∴②若q=1,又它的前4和,即4因為,所以.【點睛】“錯位相減法”求數(shù)列的和是重點也是難點,利用“錯位相減法”求數(shù)列的和應注意以下幾點:①掌握運用“錯位相減法”求數(shù)列的和的條件(一個等差數(shù)列與一個等比數(shù)列的積);②相減時注意最后一項的符號;③求和時注意項數(shù)別出錯;④最后結果一定不能忘記等式兩邊同時除以.18、(1)見解析;(2)92.4【解析】
(1)根據(jù)總體的差異性選擇分層抽樣,再結合抽樣比計算出非示范性高中和示范性高中所抽取的人數(shù);(2)將每個矩形底邊的中點值乘以相應矩形的面積所得結果,再全部相加可得出本次測驗全市學生數(shù)學成績的平均分.【詳解】(1)由于總體有明顯差異的兩部分構成,故采用分層抽樣,由題意,從示范性高中抽取人,從非師范性高中抽取人;(2)由頻率分布直方圖估算樣本平均分為推測估計本次檢測全市學生數(shù)學平均分為【點睛】本題考查分層抽樣以及計算頻率分布直方圖中的平均數(shù),著重考查學生對幾種抽樣方法的理解,以及頻率分布直方圖中幾個樣本數(shù)字的計算方法,屬于基礎題.19、(1);.(2)(3)存在,或者,【解析】
(1)令,得,故,代入等式得到,計算得到.(2)利用錯位相減法得到前N項和.(3),假設存在正整數(shù),,使成等差數(shù)列,則,解得或者.【詳解】(1)令,得,所以將代入,得所以數(shù)列是以1為首項,2為公比的等比數(shù)列,即.(2)兩式相減得到化簡得到.(3),假設存在正整數(shù),,使成等差數(shù)列則,即,因為,為正整數(shù),所以存在或者,使得成等差數(shù)列.【點睛】本題考查了等差數(shù)列,等比數(shù)列的通項公式,錯位相減法,綜合性大,技巧性強,意在考查學生的綜合應用能力.20、(1),,年齡在的人數(shù)為(2)【解析】
(1)根據(jù)第一組的頻數(shù)和頻率可得,由所有頻率和為1可得,再求得間的頻率后可得人數(shù);(2)把第一組人數(shù)編號,如男性為,女性為,然后用列舉法寫出任取3人的所有基本事件及至少有兩名女生的基本事件,計數(shù)后可得所求概率.【詳解】(1),設第2組的頻率為f,,所以,第3組和第4組的頻率為,年齡在的人數(shù)為;(2)記第1組中的男性為,女性為,隨機抽取3名群眾的基本事件是:,,共20種;其中至少有兩名女性的基本事件是:共16種.所以至少有兩名女性的概率為.【點睛】本題考查頻率分布直方圖,考查古典概型.解題關鍵是掌握性質:頻率分布直方圖中所有頻率(小矩形面積)之和為1.21、(1)4(2)【解析】
(1)求得圓的半徑,設出圓的標準方程,由此求得兩點坐標,進而求得三角形的面積.(2)根據(jù),判斷出,由直線的斜率求得直線的斜率,以此列方程求得,根據(jù)直線和圓相交,圓心到直線的距離小于半徑,確定,同時得到圓心到直線的距離.【詳解】(1)根據(jù)題意,以點(a∈R,且a≠0)為圓心的圓過坐標原點O,設圓C的半徑為r,則r2=a2,圓C的方程為(x﹣a)2+(y)2=a2,令x=0可得:y=0或,則B(0,),令y=0可得:x=0或2a,則A(2a,0),△OAB的面積S|2a|×||=4;(2)根據(jù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度基礎設施PPP項目擔保書合同3篇
- 2025年人教版(2024)九年級生物上冊月考試卷
- 2025年浙教版選修1地理下冊月考試卷含答案
- 2025年上外版選擇性必修1物理上冊月考試卷含答案
- 2025年統(tǒng)編版七年級數(shù)學下冊階段測試試卷含答案
- 2025年外研版七年級科學下冊月考試卷含答案
- 2025年度夫妻離婚后共同財產(chǎn)分割及債權債務處理協(xié)議3篇
- 2025年滬科版四年級語文下冊階段測試試卷含答案
- 2025年牛津上海版七年級生物上冊月考試卷含答案
- 2025年上教版選修5歷史上冊階段測試試卷含答案
- 《護理科研》課件
- 屋頂分布式光伏發(fā)電項目 投標方案(技術方案)
- 2024宏泰集團所屬湖北省征信限公司招聘9人高頻難、易錯點500題模擬試題附帶答案詳解
- 部編版語文四年級下冊第六單元大單元作業(yè)設計
- 中國畜禽養(yǎng)殖污染物處理行業(yè)市場集中度、企業(yè)競爭格局分析報告-智研咨詢發(fā)布
- DL∕T 2594-2023 電力企業(yè)標準化工作 評價與改進
- 廣東省廣州白云區(qū)六校聯(lián)考2025屆九上數(shù)學期末教學質量檢測試題含解析
- 2024年末端無人配送行業(yè)研究報告
- 肛瘺患者的護理查房
- 義務教育數(shù)學課程標準(2024年版)
- 護理用藥安全管理課件(圖文)
評論
0/150
提交評論