版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建省廈門市第二中學(xué)新高考數(shù)學(xué)押題試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.一個(gè)由兩個(gè)圓柱組合而成的密閉容器內(nèi)裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時(shí),液面以上空余部分的高為,如圖2放置容器時(shí),液面以上空余部分的高為,則()A. B. C. D.2.已知平面平面,且是正方形,在正方形內(nèi)部有一點(diǎn),滿足與平面所成的角相等,則點(diǎn)的軌跡長度為()A. B.16 C. D.3.寧波古圣王陽明的《傳習(xí)錄》專門講過易經(jīng)八卦圖,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(“—”表示一根陽線,“——”表示一根陰線).從八卦中任取兩卦,這兩卦的六根線中恰有四根陰線的概率為()A. B. C. D.4.已知函數(shù)(,,),將函數(shù)的圖象向左平移個(gè)單位長度,得到函數(shù)的部分圖象如圖所示,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.已知雙曲線的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,則雙曲線的離心率為()A. B. C.3 D.46.等差數(shù)列中,已知,且,則數(shù)列的前項(xiàng)和中最小的是()A.或 B. C. D.7.已知實(shí)數(shù)滿足不等式組,則的最小值為()A. B. C. D.8.已知集合,集合,那么等于()A. B. C. D.9.設(shè)點(diǎn)是橢圓上的一點(diǎn),是橢圓的兩個(gè)焦點(diǎn),若,則()A. B. C. D.10.函數(shù)在的圖象大致為()A. B.C. D.11.已知橢圓:的左、右焦點(diǎn)分別為,,過的直線與軸交于點(diǎn),線段與交于點(diǎn).若,則的方程為()A. B. C. D.12.已知條件,條件直線與直線平行,則是的()A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知為等差數(shù)列,為其前n項(xiàng)和,若,,則_______.14.在一次醫(yī)療救助活動(dòng)中,需要從A醫(yī)院某科室的6名男醫(yī)生、4名女醫(yī)生中分別抽調(diào)3名男醫(yī)生、2名女醫(yī)生,且男醫(yī)生中唯一的主任醫(yī)師必須參加,則不同的選派案共有________種.(用數(shù)字作答)15.李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價(jià)格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對(duì)這四種水果進(jìn)行促銷:一次購買水果的總價(jià)達(dá)到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會(huì)得到支付款的80%.①當(dāng)x=10時(shí),顧客一次購買草莓和西瓜各1盒,需要支付__________元;②在促銷活動(dòng)中,為保證李明每筆訂單得到的金額均不低于促銷前總價(jià)的七折,則x的最大值為__________.16.從甲、乙等8名志愿者中選5人參加周一到周五的社區(qū)服務(wù),每天安排一人,每人只參加一天.若要求甲、乙兩人至少選一人參加,且當(dāng)甲、乙兩人都參加時(shí),他們參加社區(qū)服務(wù)的日期不相鄰,那么不同的安排種數(shù)為______________.(用數(shù)字作答)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列中,,前項(xiàng)和為,若對(duì)任意的,均有(是常數(shù),且)成立,則稱數(shù)列為“數(shù)列”.(1)若數(shù)列為“數(shù)列”,求數(shù)列的前項(xiàng)和;(2)若數(shù)列為“數(shù)列”,且為整數(shù),試問:是否存在數(shù)列,使得對(duì)任意,成立?如果存在,求出這樣數(shù)列的的所有可能值,如果不存在,請(qǐng)說明理由.18.(12分)已知函數(shù),其中.(1)函數(shù)在處的切線與直線垂直,求實(shí)數(shù)的值;(2)若函數(shù)在定義域上有兩個(gè)極值點(diǎn),且.①求實(shí)數(shù)的取值范圍;②求證:.19.(12分)如圖,在三棱柱中,平面平面,側(cè)面為平行四邊形,側(cè)面為正方形,,,為的中點(diǎn).(1)求證:平面;(2)求二面角的大小.20.(12分)在多面體中,四邊形是正方形,平面,,,為的中點(diǎn).(1)求證:;(2)求平面與平面所成角的正弦值.21.(12分)已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線的左焦點(diǎn)在直線上.(Ⅰ)求的極坐標(biāo)方程和曲線的參數(shù)方程;(Ⅱ)求曲線的內(nèi)接矩形的周長的最大值.22.(10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)把的參數(shù)方程化為極坐標(biāo)方程:(2)求與交點(diǎn)的極坐標(biāo).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因?yàn)椋?故選:B【點(diǎn)睛】本題考查圓柱的體積,屬于基礎(chǔ)題.2、C【解析】
根據(jù)與平面所成的角相等,判斷出,建立平面直角坐標(biāo)系,求得點(diǎn)的軌跡方程,由此求得點(diǎn)的軌跡長度.【詳解】由于平面平面,且交線為,,所以平面,平面.所以和分別是直線與平面所成的角,所以,所以,即,所以.以為原點(diǎn)建立平面直角坐標(biāo)系如下圖所示,則,,設(shè)(點(diǎn)在第一象限內(nèi)),由得,即,化簡(jiǎn)得,由于點(diǎn)在第一象限內(nèi),所以點(diǎn)的軌跡是以為圓心,半徑為的圓在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以點(diǎn)的軌跡長度為.故選:C【點(diǎn)睛】本小題主要考查線面角的概念和運(yùn)用,考查動(dòng)點(diǎn)軌跡方程的求法,考查空間想象能力和邏輯推理能力,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于難題.3、B【解析】
根據(jù)古典概型的概率求法,先得到從八卦中任取兩卦基本事件的總數(shù),再找出這兩卦的六根線中恰有四根陰線的基本事件數(shù),代入公式求解.【詳解】從八卦中任取兩卦基本事件的總數(shù)種,這兩卦的六根線中恰有四根陰線的基本事件數(shù)有6種,分別是(巽,坤),(兌,坤),(離,坤),(震,艮),(震,坎),(坎,艮),所以這兩卦的六根線中恰有四根陰線的概率是.故選:B【點(diǎn)睛】本題主要考查古典概型的概率,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.4、B【解析】
先根據(jù)圖象求出函數(shù)的解析式,再由平移知識(shí)得到的解析式,然后分別找出和的等價(jià)條件,即可根據(jù)充分條件,必要條件的定義求出.【詳解】設(shè),根據(jù)圖象可知,,再由,取,∴.將函數(shù)的圖象向右平移個(gè)單位長度,得到函數(shù)的圖象,∴.,,令,則,顯然,∴是的必要不充分條件.故選:B.【點(diǎn)睛】本題主要考查利用圖象求正(余)弦型函數(shù)的解析式,三角函數(shù)的圖形變換,二倍角公式的應(yīng)用,充分條件,必要條件的定義的應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力和邏輯推理能力,屬于中檔題.5、A【解析】
根據(jù)題意,由拋物線的方程可得其焦點(diǎn)坐標(biāo),由此可得雙曲線的焦點(diǎn)坐標(biāo),由雙曲線的幾何性質(zhì)可得,解可得,由離心率公式計(jì)算可得答案.【詳解】根據(jù)題意,拋物線的焦點(diǎn)為,則雙曲線的焦點(diǎn)也為,即,則有,解可得,雙曲線的離心率.故選:A.【點(diǎn)睛】本題主要考查雙曲線、拋物線的標(biāo)準(zhǔn)方程,關(guān)鍵是求出拋物線焦點(diǎn)的坐標(biāo),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.6、C【解析】
設(shè)公差為,則由題意可得,解得,可得.令
,可得
當(dāng)時(shí),,當(dāng)時(shí),,由此可得數(shù)列前項(xiàng)和中最小的.【詳解】解:等差數(shù)列中,已知,且,設(shè)公差為,
則,解得
,.
令
,可得,故當(dāng)時(shí),,當(dāng)時(shí),,
故數(shù)列前項(xiàng)和中最小的是.故選:C.【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì),等差數(shù)列的通項(xiàng)公式的應(yīng)用,屬于中檔題.7、B【解析】
作出約束條件的可行域,在可行域內(nèi)求的最小值即為的最小值,作,平移直線即可求解.【詳解】作出實(shí)數(shù)滿足不等式組的可行域,如圖(陰影部分)令,則,作出,平移直線,當(dāng)直線經(jīng)過點(diǎn)時(shí),截距最小,故,即的最小值為.故選:B【點(diǎn)睛】本題考查了簡(jiǎn)單的線性規(guī)劃問題,解題的關(guān)鍵是作出可行域、理解目標(biāo)函數(shù)的意義,屬于基礎(chǔ)題.8、A【解析】
求出集合,然后進(jìn)行并集的運(yùn)算即可.【詳解】∵,,∴.故選:A.【點(diǎn)睛】本小題主要考查一元二次不等式的解法,考查集合并集的概念和運(yùn)算,屬于基礎(chǔ)題.9、B【解析】∵∵∴∵,∴∴故選B點(diǎn)睛:本題主要考查利用橢圓的簡(jiǎn)單性質(zhì)及橢圓的定義.求解與橢圓性質(zhì)有關(guān)的問題時(shí)要結(jié)合圖形進(jìn)行分析,既使不畫出圖形,思考時(shí)也要聯(lián)想到圖形,當(dāng)涉及頂點(diǎn)、焦點(diǎn)、長軸、短軸等橢圓的基本量時(shí),要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.10、B【解析】
先考慮奇偶性,再考慮特殊值,用排除法即可得到正確答案.【詳解】是奇函數(shù),排除C,D;,排除A.故選:B.【點(diǎn)睛】本題考查函數(shù)圖象的判斷,屬于??碱}.11、D【解析】
由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點(diǎn)睛】本題主要考查了橢圓的定義,橢圓標(biāo)準(zhǔn)方程的求解.12、C【解析】
先根據(jù)直線與直線平行確定的值,進(jìn)而即可確定結(jié)果.【詳解】因?yàn)橹本€與直線平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要條件.故選C【點(diǎn)睛】本題主要考查充分條件和必要條件的判定,熟記概念即可,屬于基礎(chǔ)題型.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】試題分析:因?yàn)槭堑炔顢?shù)列,所以,即,又,所以,所以.故答案為1.【考點(diǎn)】等差數(shù)列的基本性質(zhì)【名師點(diǎn)睛】在等差數(shù)列五個(gè)基本量,,,,中,已知其中三個(gè)量,可以根據(jù)已知條件,結(jié)合等差數(shù)列的通項(xiàng)公式、前項(xiàng)和公式列出關(guān)于基本量的方程(組)來求余下的兩個(gè)量,計(jì)算時(shí)須注意整體代換思想及方程思想的應(yīng)用.14、【解析】
首先選派男醫(yī)生中唯一的主任醫(yī)師,由題意利用排列組合公式即可確定不同的選派案方法種數(shù).【詳解】首先選派男醫(yī)生中唯一的主任醫(yī)師,然后從名男醫(yī)生、名女醫(yī)生中分別抽調(diào)2名男醫(yī)生、名女醫(yī)生,故選派的方法為:.故答案為.【點(diǎn)睛】解排列組合問題要遵循兩個(gè)原則:一是按元素(或位置)的性質(zhì)進(jìn)行分類;二是按事情發(fā)生的過程進(jìn)行分步.具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).15、130.15.【解析】
由題意可得顧客需要支付的費(fèi)用,然后分類討論,將原問題轉(zhuǎn)化為不等式恒成立的問題可得的最大值.【詳解】(1),顧客一次購買草莓和西瓜各一盒,需要支付元.(2)設(shè)顧客一次購買水果的促銷前總價(jià)為元,元時(shí),李明得到的金額為,符合要求.元時(shí),有恒成立,即,即元.所以的最大值為.【點(diǎn)睛】本題主要考查不等式的概念與性質(zhì)?數(shù)學(xué)的應(yīng)用意識(shí)?數(shù)學(xué)式子變形與運(yùn)算求解能力,以實(shí)際生活為背景,創(chuàng)設(shè)問題情境,考查學(xué)生身邊的數(shù)學(xué),考查學(xué)生的數(shù)學(xué)建模素養(yǎng).16、5040.【解析】分兩類,一類是甲乙都參加,另一類是甲乙中選一人,方法數(shù)為。填5040.【點(diǎn)睛】利用排列組合計(jì)數(shù)時(shí),關(guān)鍵是正確進(jìn)行分類和分步,分類時(shí)要注意不重不漏.在本題中,甲與乙是兩個(gè)特殊元素,對(duì)于特殊元素“優(yōu)先法”,所以有了分類。本題還涉及不相鄰問題,采用“插空法”。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,【解析】
由數(shù)列為“數(shù)列”可得,,,兩式相減得,又,利用等比數(shù)列通項(xiàng)公式即可求出,進(jìn)而求出;由題意得,,,兩式相減得,,據(jù)此可得,當(dāng)時(shí),,進(jìn)而可得,即數(shù)列為常數(shù)列,進(jìn)而可得,結(jié)合,得到關(guān)于的不等式,再由時(shí),且為整數(shù)即可求出符合題意的的所有值.【詳解】因?yàn)閿?shù)列為“數(shù)列”,所以,故,兩式相減得,在中令,則可得,故所以,所以數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,所以,因?yàn)?,所?(2)由題意得,故,兩式相減得所以,當(dāng)時(shí),又因?yàn)樗援?dāng)時(shí),所以成立,所以當(dāng)時(shí),數(shù)列是常數(shù)列,所以因?yàn)楫?dāng)時(shí),成立,所以,所以在中令,因?yàn)?,所以可得,所以,由時(shí),且為整數(shù),可得,把分別代入不等式可得,,所以存在數(shù)列符合題意,的所有值為.【點(diǎn)睛】本題考查數(shù)列的新定義、等比數(shù)列的通項(xiàng)公式和數(shù)列遞推公式的運(yùn)用;考查運(yùn)算求解能力、邏輯推理能力和對(duì)新定義的理解能力;通過反復(fù)利用遞推公式,得到數(shù)列為常數(shù)列是求解本題的關(guān)鍵;屬于綜合型強(qiáng)、難度大型試題.18、(1);(2)①;②詳見解析.【解析】
(1)由函數(shù)在處的切線與直線垂直,即可得,對(duì)其求導(dǎo)并表示,代入上述方程即可解得答案;(2)①已知要求等價(jià)于在上有兩個(gè)根,且,即在上有兩個(gè)不相等的根,由二次函數(shù)的圖象與性質(zhì)構(gòu)建不等式組,解得答案,最后分析此時(shí)單調(diào)性推及極值說明即可;②由①可知,是方程的兩個(gè)不等的實(shí)根,由韋達(dá)定理可表達(dá)根與系數(shù)的關(guān)系,進(jìn)而用含的式子表示,令,對(duì)求導(dǎo)分析單調(diào)性,即可知道存在常數(shù)使在上單調(diào)遞減,在上單調(diào)遞增,進(jìn)而求最值證明不等式成立.【詳解】解:(1)依題意,,,故,所以,據(jù)題意可知,,解得.所以實(shí)數(shù)的值為.(2)①因?yàn)楹瘮?shù)在定義域上有兩個(gè)極值點(diǎn),且,所以在上有兩個(gè)根,且,即在上有兩個(gè)不相等的根.所以解得.當(dāng)時(shí),若或,,,函數(shù)在和上單調(diào)遞增;若,,,函數(shù)在上單調(diào)遞減,故函數(shù)在上有兩個(gè)極值點(diǎn),且.所以,實(shí)數(shù)的取值范圍是.②由①可知,是方程的兩個(gè)不等的實(shí)根,所以其中.故,令,其中.故,令,,在上單調(diào)遞增.由于,,所以存在常數(shù),使得,即,,且當(dāng)時(shí),,在上單調(diào)遞減;當(dāng)時(shí),,在上單調(diào)遞增,所以當(dāng)時(shí),,又,,所以,即,故得證.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義、兩直線的位置關(guān)系、由極值點(diǎn)個(gè)數(shù)求參數(shù)范圍問題,還考查了利用導(dǎo)數(shù)證明不等式成立,屬于難題.19、(1)證明見解析(2)【解析】
(1)連接,交與,連接,由,得出結(jié)論;(2)以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,求出平面的法向量,利用夾角公式求出即可.【詳解】(1)連接,交與,連接,在中,,又平面,平面,所以平面;(2)由平面平面,,為平面與平面的交線,故平面,故,又,所以平面,以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,,,,,,,設(shè)平面的法向量為,,,由,得,平面的法向量為,由,故二面角的大小為.【點(diǎn)睛】本小題主要考查線面平行的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.20、(1)證明見解析(2)【解析】
(1)首先證明,,,∴平面.即可得到平面,.(2)以為坐標(biāo)原點(diǎn),,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系,分別求出平面和平面的法向量,帶入公式求解即可.【詳解】(1)∵平面,平面,∴.又∵四邊形是正方形,∴.∵,∴平面.∵平面,∴.又∵,為的中點(diǎn),∴.∵,∴平面.∵平面,∴.(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年物業(yè)服務(wù)合同延期條款
- 2024政府采購合同樣本:消防設(shè)施采購合同范本3篇
- 2025海南省建筑安全員A證考試題庫附答案
- 二零二五年度城市供水項(xiàng)目投資與建設(shè)合同3篇
- 2024幼兒園租賃合同-包含幼兒健康體檢及防疫服務(wù)3篇
- 寵物寄養(yǎng)行業(yè)中寵物疾病免責(zé)協(xié)議
- 電商行業(yè)電商平臺(tái)跨境電商支付與結(jié)算解決方案
- 二零二五年度勞動(dòng)合同中社保繳納起始日期及雙方權(quán)利義務(wù)協(xié)議3篇
- 城市共享汽車服務(wù)商服務(wù)提供及責(zé)任轉(zhuǎn)移協(xié)議
- 合作伙伴關(guān)系建立與維護(hù)策略大綱
- 雙方共用消防通道協(xié)議書
- 綠化租擺服務(wù)投標(biāo)方案(技術(shù)標(biāo))
- 整本書閱讀《鄉(xiāng)土中國》議題思辨:無訟之“訟”教學(xué)設(shè)計(jì) 中職語文高教版基礎(chǔ)模塊下冊(cè)
- 醫(yī)學(xué)教材 鼻出血的正確處理方法
- 水利水電移民安置驗(yàn)收資料目錄、工作報(bào)告、驗(yàn)收?qǐng)?bào)告、有關(guān)表格
- 2024年人教版生物八年級(jí)上冊(cè)中考復(fù)習(xí)知識(shí)點(diǎn)綱要
- 機(jī)電樣板實(shí)施施工方法及工藝要求
- 人音版音樂七年級(jí)下冊(cè) 4.2.3凱皮拉的小火車 教案教案1000字
- 建設(shè)工程工程量清單計(jì)價(jià)規(guī)范有表格
- 2023版學(xué)前教育專業(yè)人才需求調(diào)研報(bào)告及人培方案(普招)
- 酒店客房部獎(jiǎng)懲制度
評(píng)論
0/150
提交評(píng)論